深度置信网络算法反演Landsat 8 OLI气溶胶光学厚度
Inversion of aerosol optical depth for Landsat 8 OLI data using deep belief network
- 2020年24卷第10期 页码:1180-1192
纸质出版日期: 2020-10-07
DOI: 10.11834/jrs.20200048
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-10-07 ,
扫 描 看 全 文
贾臣,孙林,陈允芳,张熙空,王伟燕,王永吉.2020.深度置信网络算法反演Landsat 8 OLI气溶胶光学厚度.遥感学报,24(10): 1180-1192
Jia C,Sun L,Chen Y F,Zhang X K,Wang W Y and Wang Y J. 2020. Inversion of aerosol optical depth for Landsat 8 OLI data using deep belief network. Journal of Remote Sensing(Chinese), 24(10):1180-1192[DOI:10.11834/jrs.20200048]
传统的气溶胶遥感反演算法在地表反射率较低、结构较为均一的海洋及浓密植被等区域的气溶胶反演可以达到较高的精度,而在城市、矿区等高亮度、高异质性区域的气溶胶反演中仍面临较大的挑战。当地表反射率较高时,卫星传感器获取的对气溶胶具有标识性的信息不足,导致了气溶胶反演的困难。为更大程度地挖掘卫星信号中对气溶胶具有标识性的信息,本文提出使用深度学习技术的气溶胶遥感反演算法,用于Landsat 8 OLI传感器的气溶胶反演。选择全球不同区域的AERONET站点气溶胶实测数据以及对应区域的Landsat 8 OLI传感器的观测几何角度和表观反射率数据,根据合理的时空匹配原则构建样本数据。选择深度置信网络,在合理设置训练批次和训练次数的基础上对网络进行训练和测试,生成关于卫星传感器数据的气溶胶光学厚度拟合网络模型,实现气溶胶遥感反演。使用独立的AERONET站点气溶胶实测数据对反演结果进行了验证,结果表明:该方法可反演不同地表类型区域连续空间覆盖的气溶胶光学厚度,且达到了较高的精度(
R
=0.8745,RMSE=0.0391,MAE=0.0616,EE=87.94%)。与传统的方法相比,本方法基于单时相卫星遥感数据即可实现气溶胶的高精度反演,简化了气溶胶反演的步骤,提高了气溶胶反演的稳定性和时空适应性。
Traditional methods of aerosol remote sensing inversion can achieve high accuracy in areas with low surface reflectance
homogeneous structures
and dense vegetation while facing serious challenges in highly bright and spatially heterogeneous areas
such as cities and mining areas. High land surface reflectance causes insufficient aerosol information acquired by sensors that can lead to difficulties in aerosol inversion. A remote sensing inversion method of Aerosol Optical Depth (AOD) using deep learning algorithm is proposed in this study to extract aerosol identification information from satellite signals further and apply it to Landsat 8 OLI data. Aerosol-measured data of Aerosol Robotic Network (AERONET) sites in different regions of the world and the corresponding geometric angle and apparent reflectance of the Landsat 8 OLI data are selected to construct sample data sets according to the reasonable space-time matching method. The Deep Belief Network (DBN) is applied to implement the proposed method. The network is trained and tested on the basis of the reasonable setting of training batches and times. An AOD fitted network model on satellite remote sensing information is then generated to achieve aerosol inversion. Inversions are verified using independent AERONET-measured data. The verification showed that the proposed method can realize AOD inversion with continuous spatial coverage over different surface types and high accuracy (
R
= 0.8745
RMSE = 0.0391
MAE = 0.0616
and EE = 87.94%). Compared with traditional approaches
the proposed method can achieve high-accuracy aerosol inversions using only single-phase satellite remote sensing data
simplify the steps of aerosol inversion
and improve the stability and time–space adaptability of the results.
遥感气溶胶光学厚度遥感反演Landsat 8 OLI深度学习深度置信网络
remote sensingaerosol optical depthremote sensing inversionLandsat 8 OLIdeep learningDeep Belief Network
Ball J E, Anderson D T and Chan C S. 2017. A comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community. Journal of Applied Remote Sensing, 11(4): 042629 [DOI: 10.1117/1.JRS.11.042609http://dx.doi.org/10.1117/1.JRS.11.042609]
Charlson R J, Schwartz S E, Hales J M, Cess R D, Coakley Jr J A, Hansen J E and Hofmann D J. 1992. Climate forcing by anthropogenic aerosols. Science, 255(5043): 423-430 [DOI: 10.1126/science.255.5043.423http://dx.doi.org/10.1126/science.255.5043.423]
Chen H, Gu X F, Cheng T H, Yu T and Li Z Q. 2013. Characteristics of aerosol types over China. Journal of Remote Sensing, 17(6): 1559-1571
陈好, 顾行发, 程天海, 余涛, 李正强. 2013. 中国地区气溶胶类型特性分析. 遥感学报, 17(6): 1559-1571 [DOI: 10.11834/jrs.20133028http://dx.doi.org/10.11834/jrs.20133028]
Cheng G, Yang C Y, Yao X W, Guo L and Han J W. 2018. When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNNs. IEEE Transactions on Geoscience and Remote Sensing, 56(5): 2811-2821 [DOI: 10.1109/TGRS.2017.2783902http://dx.doi.org/10.1109/TGRS.2017.2783902]
Chu D A, Kaufman Y J, Ichoku C, Remer L A, Tanré D and Holben B N. 2002. Validation of MODIS aerosol optical depth retrieval over land. Geophysical Research Letters, 29(12): MOD2-1-MOD2-4 [DOI: 10.1029/2001gl013205http://dx.doi.org/10.1029/2001gl013205]
Hinton G E and Salakhutdinov R R. 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786): 504-507 [DOI: 10.1126/science.1127647http://dx.doi.org/10.1126/science.1127647]
Hinton G E, Osindero S and Teh Y W. 2006. A fast learning algorithm for deep belief nets. Neural Computation, 18(7): 1527-1554 [DOI: 10.1162/neco.2006.18.7.1527http://dx.doi.org/10.1162/neco.2006.18.7.1527]
Hinton G E. 2009. Deep belief networks. Scholarpedia, 4(5): 5947 [DOI: 10.4249/scholarpedia.5947http://dx.doi.org/10.4249/scholarpedia.5947]
Holben B, Vermote E, Kaufman Y J, Tanre D and Kalb V. 1992. Aerosol retrieval over land from AVHRR data-application for atmospheric correction. IEEE Transactions on Geoscience and Remote Sensing, 30(2): 212-222 [DOI: 10.1109/36.134072http://dx.doi.org/10.1109/36.134072]
Hsu N C, Jeong M J, Bettenhausen C, Sayer A M, Hansell R, Seftor C S, Huang J and Tsay S C. 2013. Enhanced deep blue aerosol retrieval algorithm: the second generation. Journal of Geophysical Research: Atmospheres, 118(16): 9296-9315 [DOI: 10.1002/jgrd.50712http://dx.doi.org/10.1002/jgrd.50712]
Hsu N C, Tsay S C, King M D and Herman J R. 2004. Aerosol properties over bright-reflecting source regions. IEEE Transactions on Geoscience and Remote Sensing, 42(3): 557-569 [DOI: 10.1109/tgrs.2004.824067http://dx.doi.org/10.1109/tgrs.2004.824067]
Hsu N C, Tsay S C, King M D and Herman J R. 2006. Deep blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3180-3195 [DOI: 10.1109/TGRS.2006.879540http://dx.doi.org/10.1109/TGRS.2006.879540]
Kaufman Y J, Sendra C. 1988. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. International Journal of Remote Sensing, 9(8): 1357-1381 [DOI: 10.1080/01431168808954942http://dx.doi.org/10.1080/01431168808954942]
Kaufman Y J, Tanré D, Remer L A, Vermote E F, Chu A and Holben B N. 1997. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. Journal of Geophysical Research: Atmospheres, 102(D14): 17051-17067 [DOI: 10.1029/96jd03988http://dx.doi.org/10.1029/96jd03988]
LeCun Y, Bengio Y and Hinton G. 2015. Deep learning. Nature, 521(7553): 436-444 [DOI: 10.1038/nature14539http://dx.doi.org/10.1038/nature14539]
Levy R C, Remer L A, Mattoo S, Vermote E F and Kaufman Y J. 2007. Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. Journal of Geophysical Research: Atmospheres, 112(D13): D13211 [DOI: 10.1029/2006JD007811http://dx.doi.org/10.1029/2006JD007811]
Li J and Boer G J. 2000. The continuity equation for the stratospheric aerosol and its characteristic curves. Journal of the Atmospheric Sciences, 57(3): 442-451 [DOI: 10.1175/1520-0469(2000)057<0442:tcefts>2.0.co;2http://dx.doi.org/10.1175/1520-0469(2000)057<0442:tcefts>2.0.co;2]
Mohamed A R, Dahl G E and Hinton G. 2012. Acoustic modeling using deep belief networks. IEEE Transactions on Audio, Speech, and Language Processing, 20(1): 14-22 [DOI: 10.1109/tasl.2011.2109382http://dx.doi.org/10.1109/tasl.2011.2109382]
Ng J Y H, Hausknecht M, Vijayanarasimhan S, Vinyals O, Monga R and Toderici G. 2015. Beyond short snippets: deep networks for video classification//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE: 4694-4702 [DOI: 10.1109/CVPR.2015.7299101http://dx.doi.org/10.1109/CVPR.2015.7299101]
Omari K, Abuelgasim A and Alhebsi K. 2019. Aerosol optical depth retrieval over the city of Abu Dhabi, United Arab Emirates (UAE) using Landsat-8 OLI images. Atmospheric Pollution Research, 10(4): 1075-1083. [DOI: 10.1016/j.apr.2019.01.015http://dx.doi.org/10.1016/j.apr.2019.01.015]
Ou Y, Chen F T, Zhao W J, Yan X and Zhang Q Z. 2017. Landsat 8-based inversion methods for aerosol optical depths in the Beijing area. Atmospheric Pollution Research, 8(2): 267-274 [DOI: 10.1016/j.apr.2016.09.004http://dx.doi.org/10.1016/j.apr.2016.09.004]
Ouaidrari H and Vermote E F. 1999. Operational atmospheric correction of Landsat TM data. Remote Sensing of Environment, 70(1): 4-15 [DOI: 10.1016/S0034-4257(99)00054-1http://dx.doi.org/10.1016/S0034-4257(99)00054-1]
Schmidhuber J. 2015. Deep learning in neural networks: an overview. Neural Networks, 61: 85-117 [DOI: 10.1016/j.neunet.2014.09.003http://dx.doi.org/10.1016/j.neunet.2014.09.003]
Sokolik I N and Toon O B. 1996. Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature, 381(6584): 681-683 [DOI: 10.1038/381681a0http://dx.doi.org/10.1038/381681a0]
Sun L, Liu Q H, Chen L F and Liu Q. 2006. The application of HJ-1 hyperspectral imaging radiometer to retrieve aerosol optical thickness over land. Journal of Remote Sensing, 10(5): 770-776
孙林, 柳钦火, 陈良富, 刘强. 2006. 环境与减灾小卫星高光谱成像仪陆地气溶胶光学厚度反演. 遥感学报, 10(5): 770-776 [DOI: 10.3321/j.issn:1007-4619.2006.05.025http://dx.doi.org/10.3321/j.issn:1007-4619.2006.05.025]
Sun L, Wei J, Bilal M, Tian X P, Jia C, Guo Y M and Mi X T. 2016a. Aerosol optical depth retrieval over bright areas using Landsat 8 OLI images. Remote Sensing, 8(1): 23 [DOI: 10.3390/rs8010023http://dx.doi.org/10.3390/rs8010023]
Sun L, Wei J, Wang J, Mi X T, Guo Y M, Lv Y, Yang Y K, Gan P, Zhou X Y, Jia C and Tian X P. 2016b. A universal dynamic threshold cloud detection algorithm (UDTCDA) supported by a prior surface reflectance database. Journal of Geophysical Research: Atmospheres, 121(12): 7172-7196 [DOI: 10.1002/2015JD024722http://dx.doi.org/10.1002/2015JD024722]
Tanre D, Herman M, Deschamps P Y and De Leffe A. 1979. Atmospheric modeling for space measurements of ground reflectances, including bidirectional properties. Applied Optics, 18(21): 3587-3594 [DOI: 10.1364/AO.18.003587http://dx.doi.org/10.1364/AO.18.003587]
Tian X P, Sun L, Liu Q and Li X H. 2018. Retrieval of high-resolution aerosol optical depth using Landsat 8 OLI data over Beijing. Journal of Remote Sensing, 22(1): 51-63
田信鹏, 孙林, 刘强, 李秀红. 2018. 北京地区Landsat 8 OLI高空间分辨率气溶胶光学厚度反演. 遥感学报, 22(1): 51-63 [DOI: 10.11834/jrs.20186362http://dx.doi.org/10.11834/jrs.20186362]
Vedal S, Hannigan M P, Dutton S J, Miller S L, Milford J B, Rabinovitch N, Kim S Y and Sheppard L. 2009. The Denver Aerosol Sources and Health (DASH) study: overview and early findings. Atmospheric Environment, 43(9): 1666-1673 [DOI: 10.1016/j.atmosenv.2008.12.017http://dx.doi.org/10.1016/j.atmosenv.2008.12.017]
Vermote E F, Tanre D, Deuze J L, Herman M and Morcette J J. 1997. Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Transactions on Geoscience and Remote Sensing, 35(3): 675-686 [DOI: 10.1109/36.581987http://dx.doi.org/10.1109/36.581987]
Wang Z T, Xin J Y, Jia S L, Li Q, Chen L F and Zhao S H. 2015. Retrieval of AOD from GF-1 16 m camera via DDV algorithm. Journal of Remote Sensing, 19(3): 530-538
王中挺, 辛金元, 贾松林, 厉青, 陈良富, 赵少华. 2015. 利用暗目标法从高分一号卫星16 m相机数据反演气溶胶光学厚度. 遥感学报, 19(3): 530-538 [DOI: 10.11834/jrs.20154110http://dx.doi.org/10.11834/jrs.20154110]
Wei J, Sun L, Peng Y R, Wang L C, Zhang Z Y, Bilal M and Ma Y C. 2018. An improved high‐spatial‐resolution aerosol retrieval algorithm for MODIS images over land. Journal of Geophysical Research: Atmospheres, 123(21): 12291-12307 [DOI: 10.1029/2017JD027795http://dx.doi.org/10.1029/2017JD027795]
Yadav V and Bethard S. 2018. A survey on recent advances in named entity recognition from deep learning models//Proceedings of the 27th International Conference on Computational Linguistics. Santa Fe: Association for Computational Linguistics: 2145-2158
相关作者
相关机构