基于WOFOST模型与UAV数据的玉米生长后期地上生物量估算
Aboveground biomass estimation of late-stage maize based on the WOFOST model and UAV observations
- 2020年24卷第11期 页码:1403-1418
纸质出版日期: 2020-11-07
DOI: 10.11834/jrs.20200069
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-11-07 ,
扫 描 看 全 文
程志强,蒙继华,纪甫江,汪洋,方慧婷,于丽红.2020.基于WOFOST模型与UAV数据的玉米生长后期地上生物量估算.遥感学报,24(11): 1403-1418
Cheng Z Q,Meng J H,Ji F J,Wang Y,Fang H T and Yu L H. 2020. Aboveground biomass estimation of late-stage maize based on the WOFOST model and UAV observations. Journal of Remote Sensing(Chinese), 24(11):1403-1418
地上生物量能够有效反映作物的生长状态,其信息的实时估算对产量预测和农田生产管理都有重要意义。作物生长模型因其详尽的生理生化基础和对生长过程数字化描述能力,成为生物量估算的理想模型。近年来,研究人员利用数据同化算法将时间序列遥感数据同化到作物生长模型中,实现了作物模型由基于气象站的点模拟到区域尺度面模拟的外推,使生物量模拟结果同时具备大范围和机理性两个方面的特点。这一模式下,时间序列的遥感数据质量将对生物量模拟精度产生直接影响,作物生长后期受到光谱饱和的影响,遥感数据的作物冠层信息获取能力会出现明显下降,因此有必要对该阶段遥感数据和作物模型的结合方式进行优化,提升生物量模拟精度。本文针对东北地区春玉米生物量遥感估算存在的问题,提出了利用WOFOST作物模型结合无人机(UAV)遥感数据实现作物生长后期生物量准确估算的新思路。新思路首先利用多光谱遥感数据获取WOFOST模型具备较高空间异质性的土壤速效养分参数以提升模型的空间信息模拟能力,使其能在一定程度上摆脱点尺度模拟的限制。同时,结合集合卡尔曼滤波算法将生长前期无人机(UAV)遥感数据同化到模型中,以缩短模型单独运行时间,减少模型运行过程中的参数误差累积,实现无遥感数据参与下的短期作物生长模拟,并输出生长后期相应的生物量模拟结果。最后,本文利用地面实测数据对新方法的生物量模拟精度进行了评价。结果表明,与全生育期数据同化相比,新方法的生物量估算精度有了明显的提升(全生育期同化:
R
2
= 0.45,RMSE = 4254.30 kg/ha;新方法:
R
2
= 0.86,RMSE = 2216.79 kg/ha)。
Aboveground biomass is one of the most important indicators of crop growth
and timely and accurate information on biomass is critical for crop growth assessment
yield forecast
and farm management. Crop models based on detailed physiological and biochemical information can provide digital descriptions for key vegetation processes and are ideal choices for crop biomass estimation. Given that crop models are generally designed to simulate crop growth at point scale
applying crop models to the regional scale requires knowledge of a large amount of input parameters with high calibration cost. In recent years
researchers have combined Remote Sensing (RS) and crop models by using assimilation methods to improve the ability of regional biomass estimation. However
considering that RS data provide most spatial information during model execution
any errors in these data will influence the biomass estimation accuracy.
Under the influence of reflectance saturation
the crop canopy information capture ability for the RS method in the late crop growth stage is lower and errors can be hardly be avoided. In this study
a new combination method for RS data and crop model was proposed to address the saturation issue during late-stage biomass estimation. In the new method
the whole crop growth season was divided into early stage and late stage. At the early stage
the World Food Studies (WOFOST) crop model was adopted to simulate daily crop growth at point scale. Next
the Leaf Area Index (LAI) based on the time-series multispectral RS was assimilated into the WOFOST model to extend model simulation from point scale to regional scale. The RS-based LAI was calculated through a statistical model using multispectral RS data acquired by an Unmanned Aerial Vehicle (UAV). The statistical model was built according to field LAI and UAV based vegetation indices. At the end of the early stage
the key model status parameters
including dry matter of different organs
soil water
and accumulated temperature
were simulated and output by the WOFOST model.
Meanwhile
soil-available nitrogen content was also estimated and transformed to the beginning of the late growth stage. At the late stage
the RS data assimilation was halted to avoid unnecessary errors caused by reflectance saturation. The estimated soil-available nitrogen and model status parameters were input to the WOFOST model
and the aboveground biomass was estimated based on the crop growth simulations. Given that the WOFOST model was only used for a short-term crop growth simulation without RS data
the error accumulation could be effectively avoided. In this study
the spring maize plots in Hongxing Farm
northeast China
were selected to apply the proposed new method and the biomass was estimated in 2015. As a comparison
the RS-based LAI for the late stage was also assimilated into the WOFOST model to estimate the spring maize biomass for the same plots. Using the field campaign data
R
2
and RMSE were calculated to analyze the estimation accuracies of the two methods. Analysis results show that the accuracy of the new method (
R
2
= 0.86
RMSE = 2216.79 kg/ha) was higher than that of the method with RS data assimilation for the whole crop growth season (
R
2
= 0.45
RMSE = 4254.30 kg/ha). In conclusion
the new method can provide reliable biomass results for spring maize in the late stage by taking advantage of the WOFOST mode and UAV data.
遥感作物模型多光谱LAI数据同化植被指数生育期
remote sensingcrop modelmultispectral dataLAIdata assimilationvegetation indexcrop growth stage
Behera S K, Srivastava P, Pathre U V, Rakesh T. 2010. An indirect method of estimating leaf area index in Jatropha curcas, L. using LAI-2000 Plant Canopy Analyzer. Agricultural & Forest Meteorology, 150(2):307-311. [DOI: 10.1016/j.agrformet.2009.11.009http://dx.doi.org/10.1016/j.agrformet.2009.11.009]
Brisson N, Gary C, Justes E, Roche R, Mary B, Ripoche D, Zimmer D, Sierra J, Bertuzzi P, Burge P, Bussière F, Cabidoche Y M, Cellier P, Debaeke P, Gaudillère J P, Hénault C, Maraux F, Seguin B and Sinoquet H. 2003. An overview of the crop model stics. European Journal of Agronomy, 18(3/4): 309-332 [DOI: 10.1016/s1161-0301(02)00110-7http://dx.doi.org/10.1016/s1161-0301(02)00110-7]
Bruno B, Lin L and Ritchie J T. 2016. A comprehensive review of the CERES-wheat, -maize and -rice models’ performances. Advances in Agronomy, 136: 27-132 [DOI: 10.1016/bs.agron.2015.11.004http://dx.doi.org/10.1016/bs.agron.2015.11.004]
Charney J, Halem M and Jastrow R. 1969. Use of incomplete historical data to infer the present state of the atmosphere. Journal of Atmospheric Sciences, 26(5): 1160-1163 [DOI: 10.1175/1520-0469(1969)026<1160:UOIHDT>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1969)026<1160:UOIHDT>2.0.CO;2]
Chen L J, Liu G H and Li H G. 2002. Estimating net primary productivity of terrestrial vegetation in China using remote sensing. Journal of Remote Sensing, 6(2): 129-135
陈利军, 刘高焕, 励惠国. 2002. 中国植被净第一性生产力遥感动态监测. 遥感学报, 6(2): 129-135 [DOI: 10.3321/j.issn:1007-4619.2002.02.010http://dx.doi.org/10.3321/j.issn:1007-4619.2002.02.010]
Cheng Z Q and Meng J H. 2015. Research advances and perspectives on crop yield estimation models. Chinese Journal of Eco-Agriculture, 23(4): 402-415
程志强, 蒙继华. 2015. 作物单产估算模型研究进展与展望. 中国生态农业学报, 23(4): 402-415 [DOI: 10.13930/j.cnki.cjea.141218http://dx.doi.org/10.13930/j.cnki.cjea.141218]
Cheng Z Q, Meng J H, Qiao Y Y, Wang Y M, Dong W Q and Han Y X. 2018. Preliminary study of soil available nutrient simulation using a modified WOFOST model and time-series remote sensing observations. Remote Sensing, 10(1): 64 [DOI: 10.3390/rs10010064http://dx.doi.org/10.3390/rs10010064]
Cheng Z Q, Meng J H, Shang J L, Liu J G, Qiao Y Y, Qian B D, Jing Q and Dong T F. 2019. Improving soil available nutrient estimation by integrating modified WOFOST model and time-series Earth observations. IEEE Transactions on Geoscience and Remote Sensing, 57(5): 2896-2908 [DOI: 10.1109/TGRS.2018.2878382http://dx.doi.org/10.1109/TGRS.2018.2878382]
Du X, Meng J H and Wu B F. 2010. Overview on monitoring crop biomass with remote sensing. Spectroscopy and Spectral Analysis, 30(11): 3098-3102
杜鑫, 蒙继华, 吴炳方. 2010. 作物生物量遥感估算研究进展. 光谱学与光谱分析, 30(11): 3098-3102) [DOI: 10.3964/j.issn.1000-0593(201011-3098-05http://dx.doi.org/10.3964/j.issn.1000-0593(2010)11-3098-05]
Duan S B, Li Z L, Wu H, Tang B H, Ma L L, Zhao E Y and Li C R. 2014. Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 26: 12-20 [DOI: 10.1016/j.jag.2013.05.007http://dx.doi.org/10.1016/j.jag.2013.05.007]
Gao F, Masek J, Schwaller M and Hall F. 2006. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 44(8): 2207-2218 [DOI: 10.1109/tgrs.2006.872081http://dx.doi.org/10.1109/tgrs.2006.872081]
Haboudane D, Miller J R, Pattey E, Zarco-Tejada P J and Strachan I B. 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3): 337-352 [DOI: 10.1016/j.rse.2003.12.013http://dx.doi.org/10.1016/j.rse.2003.12.013]
Huang J X, Gómez-Dans J L, Huang H, Ma H Y, Wu Q L, Lewis P E, Liang S L, Chen Z X, Xue J H, Wu Y T, Zhao F, Wang J and Xie X H. 2019. Assimilation of remote sensing into crop growth models: current status and perspectives. Agricultural and Forest Meteorology, 276-277: 107609 [DOI: 10.1016/j.agrformet.2019.06.008http://dx.doi.org/10.1016/j.agrformet.2019.06.008]
Huang, J X, Tian L, Liang S L, Ma H Y, Becker-reshef I, Huang Y B, Su W, Zhang X D, Zhu D H, Wu W B. 2015. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agricultural and Forest Meteorology, 204(0): [DOI: 106-121. 10.1016/j.agrformet.2015.02.001]
Huang J X, Huang H, Ma H Y, Zhuo W, Huang R, Gao X R, Liu J M, Su W, Li L, Zhang X D and Zhu D H. 2018. Review on data assimilation of remote sensing and crop growth models. Transactions of the Chinese Society of Agricultural Engineering, 34(21): 144-156
黄健熙, 黄海, 马鸿元, 卓文, 黄然, 高欣然, 刘峻明, 苏伟, 李俐, 张晓东, 朱德海. 2018. 遥感与作物生长模型数据同化应用综述. 农业工程学报, 34(21): 144-156 [DOI: 10.11975/j.issn.1002-6819.2018.21.018http://dx.doi.org/10.11975/j.issn.1002-6819.2018.21.018]
Huang J X, Sedano F, Huang Y B, Ma H Y, Li X L, Liang S L, Tian L Y, Zhang X D, Fan J L and Wu W B. 2016. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agricultural and Forest Meteorology, 216: 188-202 [DOI: 10.1016/j.agrformet.2015.10.013http://dx.doi.org/10.1016/j.agrformet.2015.10.013]
Huete A R. 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3): 295-309 [DOI: 10.1016/0034-4257(94)90134-1http://dx.doi.org/10.1016/0034-4257(94)90134-1]
Jiang Z W. 2012. Study of the Remote Sensing Data Assimilation Technology for Regional Winter Wheat Yield Estimation. Beijing: Chinese Academy of Agricultural Sciences
姜志伟. 2012. 区域冬小麦估产的遥感数据同化技术研究. 北京: 中国农业科学院
Jiang Z Y, Huete A R, Didan K and Miura T. 2008. Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112(10): 3833-3845 [DOI: 10.1016/j.rse.2008.06.006http://dx.doi.org/10.1016/j.rse.2008.06.006]
Jin X L, Kumar L, Li Z H, Li Z H, Feng H K, Xu X G, Yang G J, Wang J H. 2018. A review of data assimilation of remote sensing and crop models. European Journal of Agronomy, 92: 141‒152. [DOI:10.1016/j.eja.2017.11.002http://dx.doi.org/10.1016/j.eja.2017.11.002]
Li-Cor. 1992. LAI-2000 plant canopy analyser: instruction manual; LI–COR, Inc.: Lincoln, NE, USA.
Ma B and Tian J C. 2010. A review on crop growth simulation model research. Water Saving Irrigation, (2): 1-5
马波, 田军仓. 2010. 作物生长模拟模型研究综述. 节水灌溉, (2): 1-5
Maas S J. 1988. Using satellite data to improve model estimates of crop yield. Agronomy Journal, 80(4): 655-662 [DOI: 10.2134/agronj1988.00021962008000040021xhttp://dx.doi.org/10.2134/agronj1988.00021962008000040021x.]
McCown R L, Hammer G L, Hargreaves J N G, Holzworth D P and Freebairn D M. 1996. APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agricultural Systems, 50(3): 255-271 [DOI: 10.1016/0308-521X(94)00055-Vhttp://dx.doi.org/10.1016/0308-521X(94)00055-V]
Meng J H, Wu B F, Li Q Z and Du X. 2010. Research advances and outlook of crop monitoring with remote sensing at field Level. Remote Sensing Information, (3): 122-128
蒙继华, 吴炳方, 李强子, 杜鑫. 2010. 农田农情参数遥感监测进展及应用展望. 遥感信息, (3): 122-128 [DOI: 10.3969/j.issn.1000-3177.2010.03.025]
Meroni M, Colombo R and Panigada C. 2004. Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations. Remote Sensing of Environment, 92(2): 195-206 [DOI: 10.1016/j.rse.2004.06.005http://dx.doi.org/10.1016/j.rse.2004.06.005]
Myneni R B, Hall F G, Sellers P J and Marshak A L. 1995. The interpretation of spectral vegetation indexes. IEEE Transactions on Geoscience and Remote Sensing, 33(2): 481-486 [DOI: 10.1109/TGRS.1995.8746029http://dx.doi.org/10.1109/TGRS.1995.8746029]
Pearson R, Miller L. 1972. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. Remote Sensing of Environment, 7-12. [DOI:10.1177/002076409 904500102http://dx.doi.org/10.1177/002076409904500102]
Potter C S, Randerson J T, Field C B, Matsonet P A, Vitousek P M, Mooney H A and Klooster S A. 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 7(4): 811-841 [DOI: 10.1029/93GB02725http://dx.doi.org/10.1029/93GB02725]
Meng J H, You X Z and Cheng Z Q. 2015. Evaluating soil available nitrogen status with remote sensing//Stafford J V. Precision Agriculture '15. Wageningen: Wageningen Academic Publishers: 175-182 [DOI: 10.3920/978-90-8686-814-8_21http://dx.doi.org/10.3920/978-90-8686-814-8_21]
Pan Y C, Wang J H, Lu A X and Lu Z. 2007. Estimation of soil nitrogen accumulation based on remotely-sensed monitoring of winter-wheat growth status. Transactions of the CSAE, 23(9): 58-63
潘瑜春, 王纪华, 陆安祥, 陆洲. 2007. 基于小麦长势遥感监测的土壤氮素累积估测研究. 农业工程学报, 23(9): 58-63 [DOI: 10.3321/j.issn:1002-6819.2007.09.010http://dx.doi.org/10.3321/j.issn:1002-6819.2007.09.010]
Prince S D, Goetz S J and Goward S N. 1995. Monitoring primary production from Earth observing satellites. Water, Air, and Soil Pollution, 82(1/2): 509-522 [DOI: 10.1007/bf01182860http://dx.doi.org/10.1007/bf01182860]
Ruimy A, Saugier B and Dedieu G. 1994. Methodology for the estimation of terrestrial net primary production from remotely sensed data. Journal of Geophysical Research: Atmospheres, 99(D3): 5263-5283 [DOI: 10.1029/93jd03221http://dx.doi.org/10.1029/93jd03221]
Steven M D. 1998. The sensitivity of the OSAVI vegetation index to observational parameters. Remote Sensing of Environment, 63(1): 49-60 [DOI: 10.1016/s0034-4257(97)00114-4http://dx.doi.org/10.1016/s0034-4257(97)00114-4]
van Diepen C A, Wolf J, van Keulen H and Rappoldt C. 1989. WOFOST: a simulation model of crop production. Soil Use and Management, 5(1): 16-24 [DOI: 10.1111/j.1475-2743.1989.tb00755.xhttp://dx.doi.org/10.1111/j.1475-2743.1989.tb00755.x]
van Ittersum M K, Leffelaar P A, van Keulen H, Kropff M J, Bastiaans L and Goudriaan J. 2003. On approaches and applications of the Wageningen crop models. European Journal of Agronomy, 18(3/4): 201-234 [DOI: 10.1016/S1161-0301(02)00106-5http://dx.doi.org/10.1016/S1161-0301(02)00106-5]
Veroustraete F, Sabbe H and Eerens H. 2002. Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data. Remote Sensing of Environment, 83(3): 376-399 [DOI: 10.1016/s0034-4257(02)00043-3http://dx.doi.org/10.1016/s0034-4257(02)00043-3]
Verrelst J, Camps-Valls G, Muñoz-Marí J, Rivera J P, Veroustraete F, Clevers J G P W and Moreno J. 2015. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties – A review. ISPRS Journal of Photogrammetry and Remote Sensing, 108: 273-290 [DOI: 10.1016/j.isprsjprs.2015.05.005http://dx.doi.org/10.1016/j.isprsjprs.2015.05.005]
Wu D R, Ouyang Z, Zhao X M, Yu Q, Luo Y. 2003. The applicability research of WOFOST model in north china plain. Acta Phytoecologica Sinica, 2003, 27(5):594-602. [DOI:10.17521/cjpe.2003.0086http://dx.doi.org/10.17521/cjpe.2003.0086]
Xiao X M, Zhang Q Y, Braswell B, Urbanski S, Boles S, Wofsy S, Moore B III and Ojima D. 2004. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sensing of Environment, 91(2): 256-270 [DOI: 10.1016/j.rse.2004.03.010http://dx.doi.org/10.1016/j.rse.2004.03.010]
Yang J P and Wang Z Q. 1999. Crop growth simulation model and its application. Chinese Journal of Applied Ecology, 10(4): 501-505
杨京平, 王兆骞. 1999. 作物生长模拟模型及其应用. 应用生态学报, 10(4): 501-505 [DOI: 10.3321/j.issn:1001-9332.1999.04.031http://dx.doi.org/10.3321/j.issn:1001-9332.1999.04.031]
Yuan W P, Cai W W, Xia J Z, Chen J Q, Liu S G, Dong W J, Merbold L, Law B, Arain A, Beringer J, Bernhofer C, Black A, Blanken P D, Cescatti A, Chen Y, Francois L, Gianelle D, Janssens I A, Jung M, Kato T, Kiely G, Liu D, Marcolla B, Montagnani L, Raschi A, Roupsard O, Varlagin A and Wohlfahrt G. 2014. Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database. Agricultural and Forest Meteorology, 192-193: 108-120 [DOI: 10.1016/j.agrformet.2014.03.007http://dx.doi.org/10.1016/j.agrformet.2014.03.007]
Yuan W P, Liu S G, Zhou G S, Zhou G Y, Tieszen L L, Baldocchi D, Bernhofer C, Gholz H, Goldstein A H, Goulden M L, Hollinger D Y, Hu Y M, Law B E, Stoy P C, Vesala T and Wofsy S C. 2007. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agricultural and Forest Meteorology, 143(3/4): 189-207 [DOI: 10.1016/j.agrformet.2006.12.001http://dx.doi.org/10.1016/j.agrformet.2006.12.001]
Ehsani M R, Upadhyaya S K, Fawcett W R, Protsailo L V and Slaughter D. 2001. Feasibility of detecting soil nitrate content using a mid-infrared technique. Transactions of the ASAE, 44(6): 1931-1940 [DOI: 10.13031/2013.6991http://dx.doi.org/10.13031/2013.6991]
Zheng L, Zhu D Z, Wang C, Pan D Y, Luo B and Zhao C J. 2013. Detection system for wheat biomass based on LabVIEW. Transactions of the Chinese Society for Agricultural Machinery, 44(9): 214-218
郑玲, 朱大洲, 王成, 潘大宇, 罗斌, 赵春江. 2013. 基于LabVIEW的小麦生物量检测系统. 农业机械学报, 44(9): 214-218 [DOI: 10.6041/j.issn.1000-1298.2013.09.038http://dx.doi.org/10.6041/j.issn.1000-1298.2013.09.038]
Nearing M A, Lane L J, Alberts E E and Laflen J M. 1990. Prediction technology for soil erosion by water: status and research needs. Soil Science Society of America Journal, 54(6): 1702-1711 [DOI: 10.2136/sssaj1990.03615995005400060033xhttp://dx.doi.org/10.2136/sssaj1990.03615995005400060033x]
Boogaard H, Wolf J, Supit I, Niemeyer S and van Ittersum M. 2013. A regional implementation of WOFOST for calculating yield gaps of autumn-sown wheat across the European Union. Field Crops Research, 143: 130-142 [DOI: 10.1016/j.fcr.2012.11.005http://dx.doi.org/10.1016/j.fcr.2012.11.005]
Cheng Z Q, Meng J H and Wang Y M. 2016. Improving spring maize yield estimation at field scale by assimilating time-series HJ-1 CCD data into the WOFOST model using a new method with fast algorithms. Remote Sensing, 8(4): 303 [DOI: 10.3390/rs8040303http://dx.doi.org/10.3390/rs8040303]
Liu H J, Zhang X L, Zheng S F, Tang N and Hu Y L. 2010. Black soil organic matter predicting model based on field hyperspectral reflectance. Spectroscopy and Spectral Analysis, 30(12): 3355-3358
刘焕军, 张新乐, 郑树峰, 汤娜, 胡言亮. 2010. 黑土有机质含量野外高光谱预测模型. 光谱学与光谱分析, 30(12): 3355-3358) [DOI: 10.3964/j.issn.1000-0593(201012-3355-04]
Meng J H, Cheng Z Q and Wang Y M. 2018. Simulating soil available nutrients by a new method based on WOFOST model and remote sensing assimilation. Journal of Remote Sensing, 22(4): 546-558
蒙继华, 程志强, 王一明. 2018. WOFOST模型与遥感数据同化的土壤速效养分反演. 遥感学报, 22(4): 546-558 [DOI: 10.11834/jrs.20186431http://dx.doi.org/10.11834/jrs.20186431]
相关作者
相关机构