无人机平台的沙漠场地BRDF特征观测方法及建模
BRDF feature observation method and modeling of desert site based on UAV platform
- 2021年25卷第9期 页码:1964-1977
纸质出版日期: 2021-09-07
DOI: 10.11834/jrs.20200084
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-09-07 ,
扫 描 看 全 文
陶炳成,胡秀清,杨磊库,张璐,陈林,徐娜,王玲,吴瑞强,张督锋,张鹏.2021.无人机平台的沙漠场地BRDF特征观测方法及建模.遥感学报,25(9): 1964-1977
Tao B C,Hu X Q,Yang L K,Zhang L,Chen L,Xu N,Wang L,Wu R Q,Zhang D F and Zhang P. 2021. BRDF feature observation method and modeling of desert site based on UAV platform. National Remote Sensing Bulletin, 25(9):1964-1977
目标双向反射分布函数BRDF(Bidirectional Reflectance Distribution Function)不仅是陆面遥感的关键地球物理参数,也是星载光学遥感仪器基于地面目标的场地辐射校正重要参量,是影响定标精度的关键要素。传统野外地物多角度测量使用的观测设备,一般其结构较为复杂,重量体积较大,而且运输和组装过程繁琐,观测目标时容易受地形和交通限制,难以进行高效快速精确的野外测量。近年来,无人机由于其设备操作简便、运输和观测方式灵活等方面的优点,可作为新的观测平台应用于当前遥感试验中。本文设计了一种基于无人机平台的地表BRDF测量装置、观测方案和数据处理流程。利用多旋翼低空无人机和云台的组合,搭载野外地物光谱仪和跟拍相机,通过对地面目标多角度观测和高精度定位及角度控制,实现针对固定目标的多方位角和天顶角观测。本文采用上述设计方案和观测流程,在敦煌辐射校正场开展多次稳定均匀沙漠目标的多角度光谱观测试验,并利用实验观测数据,基于Ross-Li核驱动模型推算了场地BRDF模型参数,并与MODIS的陆表BRDF产品(MCD43C1)及反射率产品(MOD/MYD09)进行对比验证。通过开展野外实验,核验了这种新的BRDF观测手段的可靠性,获取的敦煌地表BRDF参数与MODIS遥感产品有良好的一致性,各波段的相对偏差在5%以内。本研究表明,基于多旋翼无人机的BRDF观测系统,提供了一种全新的地物目标方向反射特性观测方法,可用于自动化高频次场地特性观测以及卫星同步定标等野外实验活动。在保证观测精度的同时,极大地减轻人力物力的投入,值得广泛推广应用。
The Bidirectional Reflectance Distribution Function (BRDF) is not only a key geophysical parameter for land surface remote sensing
but also an important parameter for radiation correction of the spaceborne optical remote sensing instruments. Observation equipment used for traditional field object multiangle measurement is generally relatively complex and heavy
and the transportation and assembly processes are cumbersome. Observing targets is easy restricted by terrain and traffic
and efficient and rapid field measurements are difficult to perform. In recent years
UAVs can be used as new observation platforms in current remote sensing experiments due to their advantages
such as simple operation of equipment
flexible transportation
and observation methods.
A ground surface BRDF measurement device
observation scheme
and data processing flow based on a UAV platform are innovatively designed. Using a combination of a multirotor low-altitude drone and a gimbal
equipped with a portable ground object spectrometer and a follow-up camera
can provide high-precision positioning and angle control for multiangle observation of ground targets
thereby achieving multiazimuth and sky for fixed targets. This design scheme and observation process are adopted to carry out multiple multiangle spectral observation experiments of stable and uniform desert targets in the Dunhuang radiation correction field
and the experimental observation data are used to estimate the site BRDF model parameters based on the Ross-Li nuclear driving model
and MODIS. Land surface BRDF product (MCD43C1) and reflectivity product (MOD/MYD09) are compared and verified.
Field experiments have verified the reliability of this new equipment. At the same time
the analysis results of observation data show that the BRDF parameters of Dunhuang surface measured by the proposed device have good consistency with MODIS remote sensing products
and the relative deviation of each band is within 5%.
This study shows that the BRDF observation system based on multirotor drones provides a new and flexible observation method for the reflection characteristics of ground objects in the direction of the target. It can greatly reduce the investment of manpower and material resources while ensuring the accuracy of observation
which is worthy of widespread promotion and application.
无人机沙漠双向反射率分布函数方向反射比定标场
UAVdesertbidirectional reflectance distribution functiondirectional reflectancecalibration field
Cosnefroy H, Briottet X, Leroy M, Lecomte P and Santer R. 1997. A field experiment in Saharan Algeria for the calibration of optical satellite sensors. International Journal of Remote Sensing, 18(16): 3337-3359 [DOI: 10.1080/014311697216919http://dx.doi.org/10.1080/014311697216919]
Doctor K Z, Bachmann C M, Gray D J, Montes M J and Fusina R A. 2015. Wavelength dependence of the bidirectional reflectance distribution function (BRDF) of beach sands. Applied Optics, 54(31): F243-F255 [DOI: 10.1364/AO.54.00F243http://dx.doi.org/10.1364/AO.54.00F243]
Grenzdörffer G J and Niemeyer F. 2012. UAV based BRDF-measurements of agricultural surfaces with PFIFFikus. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3822(1): 229-234 [DOI: 10.5194/isprsarchives-XXXVIII-1-C22-229-2011http://dx.doi.org/10.5194/isprsarchives-XXXVIII-1-C22-229-2011]
Gu X F. 2013. Principles and Methods of Radiation Calibration for Aerospace Optical Remote Sensor. Beijing: Science Press
顾行发. 2013. 航天光学遥感器辐射定标原理与方法. 北京: 科学出版社
Hakala T, Suomalainen J and Peltoniemi J. 2010. Acquisition of bidirectional reflectance factor dataset using a micro unmanned aerial vehicle and a consumer camera. Remote Sensing, 2(3): 819-832 [DOI: 10.3390/rs2030819http://dx.doi.org/10.3390/rs2030819]
Hu X Q, Liu J J, Sun L, Rong Z G, Li Y, Zhang Y, Zheng Z J, Wu R H, Zhang L J and Gu X F. 2010. Characterization of CRCS Dunhuang test site and vicarious calibration utilization for Fengyun (FY) series sensors. Canadian Journal of Remote Sensing, 36(5): 566-582 [DOI: 10.5589/m10-087http://dx.doi.org/10.5589/m10-087]
Liang S L, Li X W and Wang J D. 2013. Quantitative Remote Sensing: Ideas and Algorithms. Beijing: Science Press
梁顺林, 李小文, 王锦地. 2013. 定量遥感: 理念与算法. 北京: 科学出版社
Pan Z Q, Zhang H P, Min X J and Xu Z P. 2020. Vicarious calibration correction of large FOV sensor using BRDF model based on UAV angular spectrum measurements. Journal of Applied Remote Sensing, 14(2): 027501 [DOI: 10.1117/1.JRS.14.027501http://dx.doi.org/10.1117/1.JRS.14.027501]
Roujean J L, Leroy M and Deschamps P Y. 1992. A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data. Journal of Geophysical Research, 97(D18): 20455-20468 [DOI: 10.1029/92JD01411http://dx.doi.org/10.1029/92JD01411]
Song F N. 2006. Method of Acquiring BRDF of Field Objects. Beijing: China Agricultural University
宋芳妮. 2006. 获取野外实测目标物BRDF的方法. 北京: 中国农业大学
Sun L, Guo M H, Xu N, Zhang L J, Liu J J, Hu X Q, Li Y, Rong Z G and Zhao Z H. 2012. On-orbit response variation analysis of FY-3 MERSI reflective solar bands based on Dunhuang site calibration. Spectroscopy and Spectral Analysis, 32(7): 1869-1877
孙凌, 郭茂华, 徐娜, 张立军, 刘京晶, 胡秀清, 李元, 戎志国, 赵泽会. 2012. 基于敦煌场地定标的FY-3 MERSI反射太阳波段在轨响应变化分析. 光谱学与光谱分析, 32(7): 1869-1877) [DOI: 10.3964/j.issn.1000-0593(201207-1869-09]
Wanner W, Strahler A H, Hu B, Lewis P, Muller J P, Li X, Schaaf C L B and Barnsley M J. 1997. Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and MISR data: theory and algorithm. Journal of Geophysical Research, 102(D14): 17143-17161 [DOI: 10.1029/96JD03295http://dx.doi.org/10.1029/96JD03295]
Wang L, Hu X Q and Chen L. 2017. Wide dynamic nonlinear radiometric calibration of optical satellite sensors using multiple stable earth targets. Journal of Remote Sensing, 21(6): 892-906
王玲, 胡秀清, 陈林. 2017. 多目标的卫星仪器宽动态非线性定标. 遥感学报, 21(6): 892-906 [DOI: 10.11834/jrs.20176351http://dx.doi.org/10.11834/jrs.20176351]
Wierzbicki D, Kedzierski M, Fryskowska A and Jasinski J. 2018. Quality assessment of the bidirectional reflectance distribution function for NIR imagery sequences from UAV. Remote Sensing, 10(9): 1348 [DOI: 10.3390/rs10091348http://dx.doi.org/10.3390/rs10091348]
Wu R H, Zhang P, Yang Z D, Hu X Q, Ding L and Chen L. 2016. Monitor the radiance calibration of the remote sensing instrument by using the reflectec lunar irradiance. Journal of Remote Sensing, 20(02): 278-289
吴荣华, 张鹏, 杨忠东, 胡秀清, 丁雷, 陈林. 2016. 基于月球反射的遥感器定标跟踪监测. 遥感学报, 20(02): 278-289 [DOI: 10.11834/jrs.20165155http://dx.doi.org/10.11834/jrs.20165155]
Yu T Q, Wei W, Zhang Y N, Zhang Y J, Li X, Zheng X B and Sun L. 2018. Analysis of the BRDF characteristics of Dunhuang radiometric calibration site in the spring. Acta Photonica Sinica, 47(6): 0612004
余谭其, 韦玮, 张艳娜, 张运杰, 李新, 郑小兵, 孙凌. 2018. 敦煌辐射校正场春季BRDF特性分析. 光子学报, 47(6): 0612004 [DOI: 10.3788/gzxb20184706.0612004http://dx.doi.org/10.3788/gzxb20184706.0612004]
Yu T Q. 2018. Control Software Design of BRDF Measurement System and Processing and Analyzing Measured Data of Dunhuang Test Site. Hefei: University of Science and Technology of China
余谭其. 2018. BRDF测量系统控制软件设计与敦煌场地实测数据处理及分析. 合肥: 中国科学技术大学
Zhao C Y, Wei W, Zhang Y N, Zhang M, Li X and Zheng X B. 2019. Long time series radiometric calibration of Suomi-NPP VIIRS based on surface hyperspectral BRDF model. Acta Optica Sinica, 39(8): 0828001
赵春艳, 韦玮, 张艳娜, 张孟, 李新, 郑小兵. 2019. 基于场地高光谱BRDF模型的Suomi-NPP VIIRS长时序定标. 光学学报, 39(8): 0828001 [DOI: 10.3788/AOS201939.0828001http://dx.doi.org/10.3788/AOS201939.0828001]
相关作者
相关机构