考虑目标光谱差异的机载离散激光雷达叶面积指数反演
Estimation of forest leaf area index based on spectrally corrected airborne LiDAR pulse penetration index by intensity of point cloud
- 2020年24卷第12期 页码:1450-1463
纸质出版日期: 2020-12-07
DOI: 10.11834/jrs.20200197
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-12-07 ,
扫 描 看 全 文
田罗,屈永华,Korhonen Lauri,Korpela Ilkka,Heiskanen Janne.2020.考虑目标光谱差异的机载离散激光雷达叶面积指数反演.遥感学报,24(12): 1450-1463
Tian L,Qu Y H,KORHONEN L,KORPELA I and HEISKANEN J. 2020. Estimation of forest leaf area index based on spectrally corrected airborne LiDAR pulse penetration index by intensity of point cloud. Journal of Remote Sensing(Chinese), 24(12):1450-1463
利用间隙率模型反演LAI(Leaf Area Index),需要同时获取冠层间隙率和消光系数,后者与冠层叶倾角分布有关。基于点云数量构建激光雷达穿透指数LPI (LiDAR Penetration Index),用以代替冠层间隙率GF (Gap Fraction),并利用间隙率模型反演冠层LAI是利用LiDAR PCD(LiDAR Point Cloud Data)数据反演冠层LAI主要思路。冠层和背景的光谱差异是影响PCD数据中冠层和背景点云数量的重要因素,因此从LPI到GF的校正需要获取背景和冠层的后向散射系数比(
<math id="M1"><mi>μ</mi><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi mathvariant="normal">g</mi></mrow></msub><mo>/</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi mathvariant="normal">v</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233708&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233707&type=
11.59933376
3.89466667
)。本文基于PCD数据中点云强度进行
<math id="M2"><mi>μ</mi></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233713&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233711&type=
1.69333339
2.87866688
值获取,用以实现LPI到GF的校正;在假设区域内叶倾角满足椭球形叶倾角分布的基础上,利用样地尺度下的多角度GF,采用有约束的非线性最优化方法获取椭球形叶倾角分布参数
χ
,实现冠层消光系数的获取;最后利用间隙率模型实现基于PCD数据的LAI反演。本文探讨了基于PCD数据进行冠层LAI反演时,样地尺度
<math id="M3"><msub><mrow><mi>R</mi></mrow><mrow><mi mathvariant="normal">x</mi><mi mathvariant="normal">y</mi><mo>_</mo><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">l</mi><mi mathvariant="normal">e</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233717&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233715&type=
7.62000036
3.21733332
、样方尺度
<math id="M4"><msub><mrow><mi>R</mi></mrow><mrow><mi mathvariant="normal">x</mi><mi mathvariant="normal">y</mi><mo>_</mo><mi mathvariant="normal">P</mi><mi mathvariant="normal">l</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">t</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233720&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233718&type=
7.62000036
3.21733332
以及进行背景和冠层分割的高度阈值
<math id="M5"><msub><mrow><mi>H</mi></mrow><mrow><mi mathvariant="normal">t</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233724&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233722&type=
2.79399991
3.21733332
对模型的影响。结果显示,由于区域内地衣植被广泛覆盖,基于点云强度的
<math id="M6"><mi>μ</mi></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233727&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233726&type=
1.69333339
2.87866688
值接近1,符合区域特点;经过
<math id="M7"><mi>μ</mi></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233733&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233731&type=
1.69333339
2.87866688
值校正后的GF对冠层间隙率具有较好的反映能力(
<math id="M8"><msup><mrow><mi>R</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup><mo>=</mo><mn mathvariant="normal">0.78</mn><mo>
</mo><mi mathvariant="normal">R</mi><mi mathvariant="normal">M</mi><mi mathvariant="normal">S</mi><mi mathvariant="normal">E</mi><mo>=</mo><mn mathvariant="normal">0.09</mn></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233736&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233734&type=
31.49600029
2.87866688
);对于优势种明显的区域,基于样地尺度内多角度GF的
χ
值反演受样地内冠间大间隙的影响,选择合适的样地尺度能够减小LAI反演过程中的系统性误差;结合地面参考数据,确定的最优
<math id="M9"><msub><mrow><mi>R</mi></mrow><mrow><mi mathvariant="normal">x</mi><mi mathvariant="normal">y</mi><mo>_</mo><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">l</mi><mi mathvariant="normal">e</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233740&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233737&type=
7.62000036
3.21733332
、
<math id="M10"><msub><mrow><mi>R</mi></mrow><mrow><mi mathvariant="normal">x</mi><mi mathvariant="normal">y</mi><mo>_</mo><mi mathvariant="normal">P</mi><mi mathvariant="normal">l</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">t</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233745&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233743&type=
7.62000036
3.21733332
和
<math id="M11"><msub><mrow><mi>H</mi></mrow><mrow><mi mathvariant="normal">t</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233749&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233747&type=
2.79399991
3.21733332
分别为950 m、10 m和2.6 m,在此基础上反演的LAI与地面测量数据具有高度的一致性(
<math id="M12"><msup><mrow><mi>R</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup><mo>=</mo><mn mathvariant="normal">0.84</mn><mo>
</mo><mi mathvariant="normal">R</mi><mi mathvariant="normal">M</mi><mi mathvariant="normal">S</mi><mi mathvariant="normal">E</mi><mo>=</mo><mn mathvariant="normal">0.51</mn></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233751&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233750&type=
31.49600029
2.87866688
);与
<math id="M13"><msub><mrow><mi>R</mi></mrow><mrow><mi mathvariant="normal">x</mi><mi mathvariant="normal">y</mi><mo>_</mo><mi mathvariant="normal">P</mi><mi mathvariant="normal">l</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">t</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233755&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233753&type=
7.62000036
3.21733332
相比,基于间隙率模型的LAI反演对
<math id="M14"><msub><mrow><mi>H</mi></mrow><mrow><mi mathvariant="normal">t</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233758&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233756&type=
2.79399991
3.21733332
的选择更为敏感。
Canopy gap fraction and extinction coefficient are two primary variables to retrieve Leaf Area Index (LAI) from light transmittance-based model. Currently
for the difficulty of calculating gap fraction from discrete LiDAR Point Cloud Data (PCD)
LiDAR Penetration Index (LPI) is used as the alternative of gap fraction to estimate LAI. However
LPI ignores the target spectral difference which is an important factor affecting the number of canopy and background echoes. Therefore
the backscattering coefficient of the background and canopy
<math id="M15"><mi>μ</mi><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi mathvariant="normal">g</mi></mrow></msub><mo>/</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi mathvariant="normal">v</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233764&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233761&type=
12.19199944
3.89466667
is required to correct the LPI to GF. We extracted
μ
from intensity of the PCD data
which achieved by using a linear regression between the intensity of background and that of canopy in each pulse intensity groups
then the mean
μ
of all valid groups was used to transform LPI to gap. Given there was a dominant species of vegetation in study area
the light extinction coefficient (
k
) was extracted using constrained optimization method to obtain the ellipsoidal model parameter
χ
from multi-angle gap fraction at the large spatial scale (tile scale) under the assumption that the leaf angle distribution can be modeled by a ellipsoidal model and the leaf mean tilt angle is constant through study area. Finally
LiDAR LAI was estimated using retrieved gap fraction and extinction coefficient. Meanwhile
the impact of tile scale (
R
xy_Tile
)
sample scale
R
xy_Plot
and height threshold (
H
t
) were also investigated. The results showed that the
μ
value was close to unit
and it is contributed by the extensive coverage of lichen vegetation in the area
which is consistent with the actual field characteristics. The gap fraction corrected by
μ
has a good ability to reflect the field measured data (
R
2
=0.78
RMSE=0.09)
and the leaf angle distribution parameter
χ
is affected mainly by the large gap between the crowns for areas with dominant species. In terms of size of tile
the retrieval
χ
the parameter of ellipsoidal model
was sensitive to the spatial size of tile
which means that attention should be paid to select tile size. An ill-suited tile size would result in a systematic underestimation of LAI. For the target parameter of LAI
the result revealed that it was highly consistent with the ground measurement (
R
2
=0.84
RMSE=0.51) under the condition of
R
xy_Tile
R
xy_Plot
and
H
t
of 950 m
10 m and 2.6 m respectively. It was concluded that the retrieved LAI was more sensitive to the choice of
<math id="M16"><msub><mrow><mi>H</mi></mrow><mrow><mi mathvariant="normal">t</mi></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233773&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20233768&type=
3.13266659
2.87866688
and it was noted that more attention would be paid to select appropriate
H
t
to ensuring the consistent result of LiDAR LAI and field measurements in the further work direction. We conclude that it is feasible to retrieve
μ
and further to produce LAI using ALS PCD data only. The significance of the proposed method is that it can produce reliable remotely sensed LAI from ALS PCD even with no ancillary spectral data.
遥感叶面积指数LiDAR间隙率消光系数目标光谱特性
remote sensingleaf area indexLiDARgap fractionextinction coefficienttarget spectral property
Armston J, Disney M, Lewis P, Scarth P, Phinn S, Lucas R, Bunting P and Goodwin N. 2013. Direct retrieval of canopy gap probability using airborne waveform lidar. Remote Sensing of Environment, 134: 24-38 [DOI: 10.1016/j.rse.2013.02.021http://dx.doi.org/10.1016/j.rse.2013.02.021]
Beer. 1852. Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten. Annalen der Physik, 162(5): 78-88 [DOI: 10.1002/andp.18521620505http://dx.doi.org/10.1002/andp.18521620505]
Black T A, Chen J M, Lee X H and Sagar R M. 1991. Characteristics of shortwave and longwave irradiances under a Douglas-fir forest stand. Canadian Journal of Forest Research, 21(7): 1020-1028 [DOI: 10.1139/x91-140http://dx.doi.org/10.1139/x91-140]
Campbell G S. 1986. Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution. Agricultural and Forest Meteorology, 36(4): 317-321 [DOI: 10.1016/0168-1923(86)90010-9http://dx.doi.org/10.1016/0168-1923(86)90010-9]
Cui Y K, Zhao K G, Fan W J and Xu X R. 2011. Retrieving crop fractional cover and LAI based on airborne Lidar data. Journal of Remote Sensing, 15(6): 1276-1288
Griffin A M R, Popescu S C and Zhao K G. 2008. Using LIDAR and Normalized Difference Vegetation Index to remotely determine LAI and percent canopy cover // Proceedings of SilviLaser 2008. Edinburgh, UK: [s.n.]:446-455
Hanssen K H and Solberg S. 2007. Assessment of defoliation during a pine sawfly outbreak: calibration of airborne laser scanning data with hemispherical photography. Forest Ecology and Management, 250(1/2): 9-16 [DOI: 10.1016/j.foreco.2007.03.005http://dx.doi.org/10.1016/j.foreco.2007.03.005]
Heiskanen J, Korhonen L, Hietanen J and Pellikka P K E. 2015. Use of airborne lidar for estimating canopy gap fraction and leaf area index of tropical montane forests. International Journal of Remote Sensing, 36(10): 2569-2583 [DOI: 10.1080/01431161.2015.104 1177http://dx.doi.org/10.1080/01431161.2015.1041177]
Höfle B and Pfeifer N. 2007. Correction of laser scanning intensity data: data and model-driven approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 62(6): 415-433 [DOI: 10.1016/j.isprsjprs.2007.05.008http://dx.doi.org/10.1016/j.isprsjprs.2007.05.008]
Hopkinson C and Chasmer L. 2007. Using discrete laser pulse return intensity to model canopy transmittance. The Photogrammetric Journal of Finland, 20(2): 16-26
Hopkinson C and Chasmer L. 2009. Testing LiDAR models of fractional cover across multiple forest ecozones. Remote Sensing of Environment, 113(1): 275-288 [DOI: 10.1016/j.rse.2008.09.012http://dx.doi.org/10.1016/j.rse.2008.09.012]
Hovi A. 2015. Towards an enhanced understanding of airborne LiDAR measurements of forest vegetation // Dissertationes Forestales 200. Vantaa, Finland: Finnish Society of Forest Science [DOI: 10.14214/df.200http://dx.doi.org/10.14214/df.200]
Jensen J L R, Humes K S, Vierling L A and Hudak A T. 2008. Discrete return lidar-based prediction of leaf area index in two conifer forests. Remote Sensing of Environment, 112(10): 3947-3957 [DOI: 10.1016/j.rse.2008.07.001http://dx.doi.org/10.1016/j.rse.2008.07.001]
Kaasalainen S and Rautiainen M. 2005. Hot spot reflectance signatures of common boreal lichens. Journal of Geophysical Research, 110(D20): D20102 [DOI: 10.1029/2005JD005834http://dx.doi.org/10.1029/2005JD005834]
Korhonen L, Heiskanen J and Korpela I. 2013. Modelling lidar-derived boreal forest canopy cover with SPOT 4 HRVIR data. International Journal of Remote Sensing, 34(22): 8172-8181 [DOI: 10.1080/01431161.2013.833361http://dx.doi.org/10.1080/01431161.2013.833361]
Korhonen L, Korpela I, Heiskanen J and Maltamo M. 2011. Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. Remote Sensing of Environment, 115(4): 1065-1080 [DOI: 10.1016/j.rse.2010.12.011http://dx.doi.org/10.1016/j.rse.2010.12.011]
Korpela I, Hovi A and Morsdorf F. 2012. Understory trees in airborne LiDAR data — Selective mapping due to transmission losses and echo-triggering mechanisms. Remote Sensing of Environment, 119: 92-104 [DOI: 10.1016/j.rse.2011.12.011http://dx.doi.org/10.1016/j.rse.2011.12.011]
Korpela I, Ørka H O, Hyyppä J, Heikkinen V and Tokola T. 2010. Range and AGC normalization in airborne discrete-return LiDAR intensity data for forest canopies. ISPRS Journal of Photogrammetry and Remote Sensing, 65(4): 369-379 [DOI: 10.1016/j.isprsjprs.2010.04.003http://dx.doi.org/10.1016/j.isprsjprs.2010.04.003]
Korpela I S. 2008. Mapping of understory lichens with airborne discrete-return LiDAR data. Remote Sensing of Environment, 112(10): 3891-3897 [DOI: 10.1016/j.rse.2008.06.007http://dx.doi.org/10.1016/j.rse.2008.06.007]
Lang A R G. 1987. Simplified estimate of leaf area index from transmittance of the sun’s beam. Agricultural and Forest Meteorology, 41(3/4): 179-186 [DOI: 10.1016/0168-1923(87)90078-5http://dx.doi.org/10.1016/0168-1923(87)90078-5]
Lang A R G, Xiang Y Q and Norman J M. 1985. Crop structure and the penetration of direct sunlight. Agricultural and Forest Meteorology, 35(1/4): 83-101 [DOI: 10.1016/0168-1923(85)90076-0http://dx.doi.org/10.1016/0168-1923(85)90076-0]
Li-Cor I. 1992. LAI-2000 Plant Canopy Analyzer Operating Manual. Lincoln, Nebraska, USA: LI-COR Inc.
Lovell J L, Jupp D L B, Culvenor D S and Coops N C. 2003. Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests. Canadian Journal of Remote Sensing, 29(5): 607-622 [DOI: 10.5589/m03-026http://dx.doi.org/10.5589/m03-026]
Luo S Z, Chen J M, Wang C, Gonsamo A, Xi X H, Lin Y, Qian M J, Peng D L, Nie S and Qin H M. 2018. Comparative performances of airborne LiDAR height and intensity data for leaf area index estimation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(1): 300-310 [DOI: 10.1109/JSTARS.2017.2765890http://dx.doi.org/10.1109/JSTARS.2017.2765890]
Luo S Z, Wang C, Zhang G B, Xi X H and Li G C. 2013. Forest leaf area index (LAI) inversion using airborne lidar data. Chinese Journal of Geophysics, 56(5): 1467-1475
骆社周, 王成, 张贵宾, 习晓环, 李贵才. 2013. 机载激光雷达森林叶面积指数反演研究. 地球物理学报, 56(5): 1467-1475 [DOI: 10.6038/cjg20130505http://dx.doi.org/10.6038/cjg20130505]
Miller J B. 1967. A formula for average foliage density. Australian Journal of Botany, 15(1): 141-144 [DOI: 10.1071/BT9670141http://dx.doi.org/10.1071/BT9670141]
Morsdorf F, Kötz B, Meier E, Itten K I and Allgöwer B. 2006. Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. Remote Sensing of Environment, 104(1): 50-61 [DOI: 10.1016/j.rse.2006.04.019http://dx.doi.org/10.1016/j.rse.2006.04.019]
Nilson T. 1999. Inversion of gap frequency data in forest stands. Agricultural and Forest Meteorology, 98-99: 437-448 [DOI: 10.1016/S0168-1923(99)00114-8http://dx.doi.org/10.1016/S0168-1923(99)00114-8]
Ni-Meister W, Jupp D L B and Dubayah R. 2001. Modeling lidar waveforms in heterogeneous and discrete canopies. IEEE Transactions on Geoscience and Remote Sensing, 39(9): 1943-1958 [DOI: 10.1109/36.951085http://dx.doi.org/10.1109/36.951085]
Pearse G D, Morgenroth J, Watt M S and Dash J P. 2017. Optimising prediction of forest leaf area index from discrete airborne lidar. Remote Sensing of Environment, 200: 220-239 [DOI: 10.1016/j.rse.2017.08.002http://dx.doi.org/10.1016/j.rse.2017.08.002]
Qin Y, Yao W, Vu T T, Li S, Niu Z and Ban Y. Characterizing radiometric attributes of point cloud using a normalized reflective factor derived from small footprint LiDAR waveform. IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing. 2015, 8, 740-749. [DOI: 10.1109/JSTARS.2014.2354014http://dx.doi.org/10.1109/JSTARS.2014.2354014]
Qu Y H, Shaker A, Korhonen L, Silva C A, Jia K, Tian L and Song J L. 2020. Direct estimation of forest leaf area index based on spectrally corrected airborne LiDAR pulse penetration ratio. Remote Sensing, 12(2): 217 [DOI: 10.3390/rs12020217http://dx.doi.org/10.3390/rs12020217]
Qu Y H, Shaker A, Silva C A, Klauberg C and Pinagé E R. 2018. Remote sensing of leaf area index from LiDAR height percentile metrics and comparison with MODIS product in a selectively logged tropical forest area in eastern Amazonia. Remote Sensing, 10(6): 970 [DOI: 10.3390/rs10060970http://dx.doi.org/10.3390/rs10060970]
Riaño D, Valladares F, Condés S and Chuvieco E. 2004. Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests. Agricultural and Forest Meteorology, 124(3/4): 269-275 [DOI: 10.1016/j.agrformet.2004.02.005http://dx.doi.org/10.1016/j.agrformet.2004.02.005]
Richardson J J, Moskal L M and Kim S H. 2009. Modeling approaches to estimate effective leaf area index from aerial discrete-return LIDAR. Agricultural and Forest Meteorology, 149(6/7): 1152-1160 [DOI: 10.1016/j.agrformet.2009.02.007http://dx.doi.org/10.1016/j.agrformet.2009.02.007]
Roberts S D, Dean T J, Evans D L, McCombs J W, Harrington R L and Glass P A. 2005. Estimating individual tree leaf area in loblolly pine plantations using LiDAR-derived measurements of height and crown dimensions. Forest Ecology and Management, 213(1/3): 54-70 [DOI: 10.1016/j.foreco.2005.03.025http://dx.doi.org/10.1016/j.foreco.2005.03.025]
Solberg S. 2010. Mapping gap fraction, LAI and defoliation using various ALS penetration variables. International Journal of Remote Sensing, 31(5): 1227-1244 [DOI: 10.1080/01431160903380672http://dx.doi.org/10.1080/01431160903380672]
Solberg S, Brunner A, Hanssen K H, Lange H, Næsset E, Rautiainen M and Stenberg P. 2009. Mapping LAI in a Norway spruce forest using airborne laser scanning. Remote Sensing of Environment, 113(11): 2317-2327 [DOI: 10.1016/j.rse.2009.06.010http://dx.doi.org/10.1016/j.rse.2009.06.010]
Solberg S, Næsset E, Hanssen K H and Christiansen E. 2006. Mapping defoliation during a severe insect attack on Scots pine using airborne laser scanning. Remote Sensing of Environment, 102(3/4): 364-376 [DOI: 10.1016/j.rse.2006.03.001http://dx.doi.org/10.1016/j.rse.2006.03.001]
Su W, Zhan J G, Zhang M Z, Wu D Y and Zhang R. 2016. Estimation method of crop leaf area index based on airborne lidar data. Transactions of the Chinese Society for Agricultural Machinery, 47(3): 272-277
苏伟, 展郡鸽, 张明政, 吴代英, 张蕊. 2016. 基于机载LiDAR数据的农作物叶面积指数估算方法研究. 农业机械学报, 47(3): 272-277 [DOI: 10.6041/j.issn.1000-1298.2016.03.038http://dx.doi.org/10.6041/j.issn.1000-1298.2016.03.038]
Tang H, Dubayah R, Swatantran A, Hofton M, Sheldon S, Clark D B and Blair B. 2012. Retrieval of vertical LAI profiles over tropical rain forests using waveform lidar at La Selva, Costa Rica. Remote Sensing of Environment, 124: 242-250 [DOI: 10.1016/j.rse.2012.05.005http://dx.doi.org/10.1016/j.rse.2012.05.005]
Tesfamichael S G, van Aardt J, Roberts W and Ahmed F. 2018. Retrieval of narrow-range LAI of at multiple lidar point densities: application on Eucalyptus grandis plantation. International Journal of Applied Earth Observation and Geoinformation, 70: 93-104 [DOI: 10.1016/j.jag.2018.04.014http://dx.doi.org/10.1016/j.jag.2018.04.014]
Wagner W, Ullrich A, Melzer T, Briese C and Kraus K. 2004. From single-pulse to full-waveform airborne laser scanners: potential and practical challenges. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 35: 201-206
Yan G J, Hu R H, Luo J H, Mu X H, Xie D H and Zhang W M. 2016. Review of indirect methods for leaf area index measurement. Journal of Remote Sensing, 20(5): 958-978
阎广建, 胡容海, 罗京辉, 穆西晗, 谢东辉, 张吴明. 2016. 叶面积指数间接测量方法. 遥感学报, 20(5): 958-978 [DOI: 10.11834/jrs.20166238http://dx.doi.org/10.11834/jrs.20166238]
Yan W Y and Shaker A. 2014. Radiometric correction and normalization of airborne LiDAR intensity data for improving land-cover classification. IEEE Transactions on Geoscience and Remote Sensing, 52(12): 7658-7673 [DOI: 10.1109/TGRS.2014.2316195http://dx.doi.org/10.1109/TGRS.2014.2316195]
You H T, Wang T J, Skidmore A K and Xing Y Q. 2017. Quantifying the effects of normalisation of airborne LiDAR intensity on coniferous forest leaf area index estimations. Remote Sensing, 9(2): 163 [DOI: 10.3390/rs9020163http://dx.doi.org/10.3390/rs9020163]
Zhao F, Li Z Y, Wang Y S and Pang Y. 2008. The application of lidar data in forest. Remote Sensing Information, (1): 106-110, 53
赵峰, 李增元, 王韵晟, 庞勇. 2008. 机载激光雷达(LiDAR)数据在森林资源调查中的应用综述. 遥感信息, (1): 106-110, 53 [DOI: 10.3969/j.issn.1000-3177.2008.01.021http://dx.doi.org/10.3969/j.issn.1000-3177.2008.01.021]
Zhao K G and Popescu S. 2009. Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA. Remote Sensing of Environment, 113(8): 1628-1645 [DOI: 10.1016/j.rse.2009.03.006http://dx.doi.org/10.1016/j.rse.2009.03.006]
Zheng G, Ma L X, Eitel J U H, He W, Magney T S, Moskal L M and Li M S. 2017. Retrieving directional gap fraction, extinction coefficient, and effective leaf area index by incorporating scan angle information from discrete aerial lidar data. IEEE Transactions on Geoscience and Remote Sensing, 55(1): 577-590 [DOI: 10.1109/TGRS.2016.2611651http://dx.doi.org/10.1109/TGRS.2016.2611651]
相关作者
相关机构