山地叶面积指数反演理论、方法与研究进展
Review on the theory, method, and research progress of leaf area index estimation in mountainous areas
- 2020年24卷第12期 页码:1433-1449
纸质出版日期: 2020-12-07
DOI: 10.11834/jrs.20200229
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-12-07 ,
扫 描 看 全 文
江海英,贾坤,赵祥,魏香琴,王冰,姚云军,张晓通,江波.2020.山地叶面积指数反演理论、方法与研究进展.遥感学报,24(12): 1433-1449
Jiang H Y,Jia K,Zhao X,Wei X Q,Wang B,Yao Y J,Zhang X T and Jiang B. 2020. Review on the theory, method, and research progress of leaf area index estimation in mountainous areas. Journal of Remote Sensing(Chinese), 24(12):1433-1449
叶面积指数LAI(Leaf Area Index)是表征叶片疏密程度和冠层结构特征的重要植被参数,在气候变化、作物生长模型以及碳、水循环研究中发挥着重要作用。遥感是获取区域及全球尺度LAI的一个重要手段,当前LAI产品主要基于遥感数据反演得到,但是多数LAI产品算法并未考虑地形特征的影响,导致山地LAI遥感反演精度不确定性大。提高山地LAI遥感反演精度亟需考虑地形因子对冠层反射率的影响,其中山地冠层反射率模型和遥感数据地形校正是提升山地LAI遥感反演精度的关键。本文围绕山地LAI遥感反演理论与方法,综合分析了国内外山地冠层反射率模型和地形校正模型的研究进展,总结了目前山地LAI遥感反演存在的问题,并讨论了未来研究的发展趋势。
Leaf Area Index (LAI) is an important vegetation parameter that represents leaf density and canopy structure characteristics. This parameter plays an important role in climate change
crop growth model
and carbon and water cycle studies. Remote sensing is an important means to estimate LAI on regional and global scales. LAI products are currently mainly obtained by remote sensing retrieval. However
most LAI product algorithms ignore the effect of topographic features
which results in the great uncertainty in the accuracy of retrieved LAI in mountainous areas. The influence of topographic factors on the canopy reflectance needs to be considered to improve the accuracy of mountain LAI retrieval. Generally
there are mainly two methods to eliminate the influence of topography on mountain LAI retrieval. One method is to use the mountain canopy reflectance model to simulate reflectance
and the other method is to perform topographic correction on remote sensing data.
In this paper
the research progress of mountain canopy reflectance model and topographic correction method were comprehensively analyzed on the basis of the theories and methods of LAI retrieval in mountainous areas. For mountain LAI retrieval method based on mountain canopy reflectance simulation
some mountain canopy reflectance models simplify the influence of topographic factors on atmospheric scattering and adjacent terrain scattering
resulting in poor model simulation and low LAI retrieval accuracy. Some complex mountain canopy reflectance models
such as geometric-optical hybrid model or computer simulation model
can accurately simulate topographic effect on reflectance
but it is difficult to invert due to complex input parameters. For mountain LAI retrieval method based on image topographic correction
it is difficult to choose suitable topographic correction method
because the generality of the existing models is poor that a single topographic correction model may only be applicable to a certain terrain condition
a certain area
a certain sensor or a certain waveband. In addition to the above two methods
some studies directly add topographic factors into the statistical regression equation of LAI as a control variable
so as to retrieve mountain LAI. However
this method may cause over fitting phenomenon and does not have robustness and portability.
Based on the existing problems of mountain canopy reflectance model
topographic correction method and mountain LAI retrieval method
this paper summarizes and discusses the development trend of future research of mountain LAI retrieval. For mountain canopy reflectance model
it is necessary to develop a model that takes into account the non-Lambertian characteristics of the surface
the geotropic growth of trees
and diffuse radiation and other factors to improve the accuracy of model simulation. In addition
the parameter optimization and retrievability of the model should also be considered. For topographic correction method
it can be combined with BRDF correction or atmospheric correction in the future
especially for complex terrain. To accurately and efficiently retrieve mountain LAI
it is necessary to comprehensively consider factors such as the size of the study area
the heterogeneity of the ground surface
and the degree of terrain undulations
and choose an appropriate topographic correction method or mountain canopy reflectance model. Moreover
it is necessary to carry out more in-depth research on the validation of LAI retrieval accuracy in mountainous areas.
遥感光学遥感叶面积指数地形校正山地冠层反射率模型DEM
remote sensingoptical remote sensingLAItopographic correctionmountain canopy reflectance modelDEM
Baret F, Bacour C, Béal D, Weiss M, Berthelot B and Regner P. 2006. Algorithm theoretical basis document for MERIS top of canopy land products (TOC_VEG), Contract 1-25
Biudes M S, Machado N G, De Morais Danelichen V H, Souza M C, Vourlitis G L and De Souza Nogueira J. 2014. Ground and remote sensing-based measurements of leaf area index in a transitional forest and seasonal flooded forest in Brazil. International Journal of Biometeorology, 58(6): 1181-1193 [DOI: 10.1007/s00484-013-0713-4http://dx.doi.org/10.1007/s00484-013-0713-4]
Bonan G. 2002. Ecological Climatology: concept and Applications. New York: Cambridge University Press.
Bréda N J J. 2008. Leaf area index//Jørgensen S E and Fath B D, eds. Encyclopedia of Ecology. Amsterdam: Elsevier: 2148-2154 [DOI: 10.1016/b978-008045405-4.00849-1http://dx.doi.org/10.1016/b978-008045405-4.00849-1]
Chen J M and Black T A. 1992. Defining leaf area index for non-flat leaves. Plant, Cell and Environment, 15(4): 421-429 [DOI: 10.1111/j.1365-3040.1992.tb00992.xhttp://dx.doi.org/10.1111/j.1365-3040.1992.tb00992.x]
Chen W and Cao C X. 2012. Topographic correction-based retrieval of leaf area index in mountain areas. Journal of Mountain Science, 9(2): 166-174 [DOI: 10.1007/s11629-012-2248-2http://dx.doi.org/10.1007/s11629-012-2248-2]
Chen Y, Hall A and Liou K N. 2006. Application of three-dimensional solar radiative transfer to mountains. Journal of Geophysical Research: Atmosphere, 111(D21): D21111 [DOI: 10.1029/2006JD007163http://dx.doi.org/10.1029/2006JD007163]
Civco D L. 1989. Topographic normalization of Landsat thematic mapper digital imagery. Photogrammetric Engineering and Remote Sensing, 55(9): 1303-1309
Claverie M, Matthews J L, Vermote E F and Jastice C O. 2016. A 30+ year AVHRR LAI and FAPAR climate data record: Algorithm description and validation. Remote Sensing, 8(3), 263 [DOI: 10.3390/rs8030263http://dx.doi.org/10.3390/rs8030263]
Combal B, Isaka H and Trotter C. 2000. Extending a turbid medium BRDF model to allow sloping terrain with a vertical plant stand. IEEE Transactions on Geoscience and Remote Sensing, 38(2): 798-810 [DOI: 10.1109/36.842009http://dx.doi.org/10.1109/36.842009]
Deng F, Chen J M, Plummer S, Chen M Z and Pisek J. 2006. Algorithm for global leaf area index retrieval using satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 44(8): 2219-2229 [DOI: 10.1109/TGRS.2006.872100http://dx.doi.org/10.1109/TGRS.2006.872100]
Ding Y F, You H G, Zhang H, Chen S J, Xu B and Sun T. 2018. Topographic correction method for high-resolution remote sensing images. Journal of Beijing University of Aeronautics and Astronautics, 44(1): 27-35
丁一帆, 尤红建, 张浩, 陈双军, 许斌, 孙韬. 2018. 面向高分辨率遥感影像的地形辐射校正方法. 北京航空航天大学学报, 44(1): 27-35 [DOI: 10.13700/j.bh.1001-5965.2016.0979http://dx.doi.org/10.13700/j.bh.1001-5965.2016.0979]
Dozier J and Frew J. 1990. Rapid calculation of terrain parameters for radiation modeling from digital elevation data. IEEE Transactions on Geoscience and Remote Sensing, 28(5): 963-969 [DOI: 10.1109/36.58986http://dx.doi.org/10.1109/36.58986]
Duan S B and Yan G J. 2007. A review of models for topographic correction of remotely sensed images in mountainous area. Journal of Beijing Normal University (Natural Science), 43(3): 362-366
段四波, 阎广建. 2007. 山区遥感图像地形校正模型研究综述. 北京师范大学学报(自然科学版), 43(3): 362-366 [DOI: 10.3321/j.issn:0476-0301.2007.03.025http://dx.doi.org/10.3321/j.issn:0476-0301.2007.03.025]
Fan W L, Chen J M, Ju W M and Nesbitt N. 2014a. Hybrid geometric optical–radiative transfer model suitable for forests on slopes. IEEE Transactions on Geoscience and Remote Sensing, 52(9): 5579-5586 [DOI: 10.1109/tgrs.2013.2290590http://dx.doi.org/10.1109/tgrs.2013.2290590]
Fan W L, Chen J M, Ju W M and Zhu G L. 2014b. GOST: a geometric-optical model for sloping terrains. IEEE Transactions on Geoscience and Remote Sensing, 52(9): 5469-5482 [DOI: 10.1109/TGRS.2013.2289852http://dx.doi.org/10.1109/TGRS.2013.2289852]
Fan W L, Li J and Liu Q H. 2015. GOST2: the improvement of the canopy reflectance model GOST in separating the sunlit and shaded leaves. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(4): 1423-1431 [DOI: 10.1109/JSTARS.2015.2413994http://dx.doi.org/10.1109/JSTARS.2015.2413994]
Fang H L, Baret F, Plummer S and Schaepman‐Strub G. 2019. An overview of global Leaf Area Index (LAI): methods, products, validation, and applications. Reviews of Geophysics, 57(3): 739-799 [DOI: 10.1029/2018rg000608http://dx.doi.org/10.1029/2018rg000608]
Fang J Y, Shen Z H and Cui H T. 2004. Ecological characteristics of mountains and research issues of mountain ecology. Biodiversity Science, 12(1): 10-19
方精云, 沈泽昊, 崔海亭. 2004. 试论山地的生态特征及山地生态学的研究内容. 生物多样性, 12(1): 10-19 [DOI: 10.3321/j.issn:1005-0094.2004.01.003http://dx.doi.org/10.3321/j.issn:1005-0094.2004.01.003]
Fu G and Wu J S. 2017. Validation of MODIS collection 6 FPAR/LAI in the alpine grassland of the northern Tibetan plateau. Remote Sensing Letters, 8(9): 831-838 [DOI: 10.1080/2150704X.2017.1331054http://dx.doi.org/10.1080/2150704X.2017.1331054]
Gao M L, Zhao W J, Gong Z N, Gong H L, Chen Z and Tang X M. 2014. Topographic correction of ZY-3 satellite images and its effects on estimation of shrub leaf biomass in mountainous areas. Remote Sensing, 6(4): 2745-2764 [DOI: 10.3390/rs6042745http://dx.doi.org/10.3390/rs6042745]
Gao Y N and Zhang W C. 2008. Comparison test and research progress of topographic correction on remotely sensed data. Geographical Research, 27(2): 467-477
高永年, 张万昌. 2008. 遥感影像地形校正研究进展及其比较实验. 地理研究, 27(2): 467-477 [DOI: 10.3321/j.issn:1000-0585.2008.02.024http://dx.doi.org/10.3321/j.issn:1000-0585.2008.02.024]
Gao Y N and Zhang W C. 2009. A simple empirical topographic correction method for ETM+ imagery. International Journal of Remote Sensing, 30(9): 2259-2275 [DOI: 10.1080/0143116080254 9336http://dx.doi.org/10.1080/01431160802549336]
Gastellu-Etchegorry J P, Demarez V, Pinel V and Zagolski F. 1996. Modeling radiative transfer in heterogeneous 3-D vegetation canopies. Remote Sensing of Environment, 58(2): 131-156 [DOI: 10.1016/0034-4257(95)00253-7http://dx.doi.org/10.1016/0034-4257(95)00253-7]
Gastellu-Etchegorry J P, Yin T G, Lauret N, Cajgfinger T, Gregoire T, Grau E, Feret J B, Lopes M, Guilleux J, Dedieu G, Malenovský Z, Cook B D, Morton D, Rubio J, Durrieu S, Cazanave G, Martin E and Ristorcelli T. 2015. Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes. Remote Sensing, 7(2): 1667-1701 [DOI: 10.3390/rs70201667http://dx.doi.org/10.3390/rs70201667]
Ge H L, Lu D S, He S Z, Xu A J, Zhou G M and Du H Q. 2008. Pixel-based minnaert correction method for reducing topographic effects on a Landsat 7 ETM+ image. Photogrammetric Engineering and Remote Sensing, 74(11): 1343-1350 [DOI: 10.14358/pers.74.11.1343http://dx.doi.org/10.14358/pers.74.11.1343]
Geng J, Chen J M, Fan W L, Tu L L, Tian Q J, Yang R R, Yang Y J, Wang L, Lv C G and Wu S B. 2017. GOFP: a geometric-optical model for forest plantations. IEEE Transactions on Geoscience and Remote Sensing, 55(9): 5230-5241 [DOI: 10.1109/tgrs.2017.2704079http://dx.doi.org/10.1109/tgrs.2017.2704079]
Ghasemi N, Mohammadzadeh A and Sahebi M R. 2013. Assessment of different topographic correction methods in ALOS AVNIR-2 data over a forest area. International Journal of Digital Earth, 6(5): 504-520 [DOI: 10.1080/17538947.2011.625049http://dx.doi.org/10.1080/17538947.2011.625049]
Gonsamo A and Chen J M. 2014. Improved LAI algorithm implementation to MODIS data by incorporating background, topography, and foliage clumping information. IEEE Transactions on Geoscience and Remote Sensing, 52(2): 1076-1088 [DOI: 10.1109/TGRS.2013.2247405http://dx.doi.org/10.1109/TGRS.2013.2247405]
Gonsamo A and Pellikka P. 2008. Methodology comparison for slope correction in canopy leaf area index estimation using hemispherical photography. Forest Ecology and Management, 256(4): 749-759 [DOI: 10.1016/j.foreco.2008.05.032http://dx.doi.org/10.1016/j.foreco.2008.05.032]
Gu D G and Gillespie A. 1998. Topographic normalization of Landsat TM images of forest based on subpixel sun–canopy–sensor geometry. Remote Sensing of Environment, 64(2): 166-175 [DOI: 10.1016/s0034-4257(97)00177-6http://dx.doi.org/10.1016/s0034-4257(97)00177-6]
Gupta S K and Shukla D P. 2020. Evaluation of topographic correction methods for LULC preparation based on multi-source DEMs and landsat-8 imagery. Spatial Information Research, 28(1): 113-127 [DOI: 10.1007/s41324-019-00274-0http://dx.doi.org/10.1007/s41324-019-00274-0]
Hantson S and Chuvieco E. 2011. Evaluation of different topographic correction methods for landsat imagery. International Journal of Applied Earth Observation and Geoinformation, 13(5): 691-700 [DOI: 10.1016/j.jag.2011.05.001http://dx.doi.org/10.1016/j.jag.2011.05.001]
Hao D L, Wen J G, Xiao Q, You D Q and Tang. An improved topography-coupled Kernel-driven model for land surface anisotropic reflectance. 2020. IEEE Transactions on Geoscience and Remote Sensing,58(4): 2833-2847 [ DOI: 10.1109/TGRS.2019.2956705http://dx.doi.org/10.1109/TGRS.2019.2956705]
Heiskanen J. 2006. Estimating aboveground tree biomass and leaf area index in a mountain birch forest using ASTER satellite data. International Journal of Remote Sensing, 27(6): 1135-1158 [DOI: 10.1080/01431160500353858http://dx.doi.org/10.1080/01431160500353858]
Helbig N, Löwe H and Lehning M. 2009. Radiosity approach for the shortwave surface radiation balance in complex terrain. Journal of the Atmospheric Sciences, 66(9): 2900-2912 [DOI: 10.1175/2009JAS2940.1http://dx.doi.org/10.1175/2009JAS2940.1]
Houborg R, Soegaard H and Boegh E. 2007. Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sensing of Environment, 106(1): 39-58 [DOI: 10.1016/j.rse.2006.07.016http://dx.doi.org/10.1016/j.rse.2006.07.016]
Huang D, Knyazikhin Y, Wang W, Deering D W, Stenberg P, Shabanov N, Tan B and Myneni R B. 2008. Stochastic transport theory for investigating the three-dimensional canopy structure from space measurements. Remote Sensing of Environment, 112(1), 35-50 [DOI: 10.1016/j.rse.2006.05.026http://dx.doi.org/10.1016/j.rse.2006.05.026]
Huang H G and Lian J. 2015. A 3D approach to reconstruct continuous optical images using lidar and MODIS. Forest Ecosystems, 2: 20 [DOI: 10.1186/s40663-015-0044-5http://dx.doi.org/10.1186/s40663-015-0044-5]
Huang H G, Qin W H and Liu Q H. 2013. RAPID: a radiosity applicable to Porous individual objects for directional reflectance over complex vegetated scenes. Remote Sensing of Environment, 132: 221-237. [DOI: 10.1016/j.rse.2013.01.013http://dx.doi.org/10.1016/j.rse.2013.01.013]
Huang W, Zhang L P and Li P X. 2005. An improved topographic correction approach for satellite image. Journal of Image and Graphics, 10(9): 1124-1128
黄微, 张良培, 李平湘. 2005. 一种改进的卫星影像地形校正算法. 中国图象图形学报, 10(9): 1124-1128 [DOI: 10.3969/j.issn.1006-8961.2005.09.009http://dx.doi.org/10.3969/j.issn.1006-8961.2005.09.009]
Jiang H, Zhang Z M, Wang X Q and He G J. 2015. Bamboo forest LAI retrieval and analysis in mountainous area based on TAVI. Journal of Geo-information Science, 17(4): 500-504
江洪, 张兆明, 汪小钦, 何国金. 2015. 基于TAVI的山区毛竹林LAI反演分析. 地球信息科学学报, 17(4): 500-504 [DOI: 10.3724/SP.J.1047.2015.00500http://dx.doi.org/10.3724/SP.J.1047.2015.00500]
Jin H A, Li A N, Bian J H, Nan X, Zhao W, Zhang Z J and Yin G F. 2017. Intercomparison and validation of MODIS and GLASS leaf area index (LAI) products over mountain areas: a case study in southwestern China. International Journal of Applied Earth Observation and Geoinformation, 55: 52-67 [DOI: 10.1016/j.jag.2016.10.008http://dx.doi.org/10.1016/j.jag.2016.10.008]
Jin H A, Li A N, Bian J H, Zhao W, Zhang Z J and Nan X. 2016. Leaf Area Index (LAI) estimationfrom remotely sensed observations in different topographic gradients over southwestern China. Remote Sensing Technology and Application, 31(1): 42-50
靳华安, 李爱农, 边金虎, 赵伟, 张正健, 南希. 2016. 西南地区不同山地环境梯度叶面积指数遥感反演. 遥感技术与应用, 31(1): 42-50 [DOI: 10.11873/j.issn.1004-0323.2016.1.0042http://dx.doi.org/10.11873/j.issn.1004-0323.2016.1.0042]
Jin H A, Li A N, Xu W X, Xiao Z Q, Jiang J Y, and Xue H Z. 2019. Evaluation of topographic effects on multiscale leaf area index estimation using remotely sensed observations from multiple sensors. ISPRS Journal of Photogrammetry and Remote Sensing, 154: 176-188 [DOI: 10.1016/j.isprsjprs.2019.06.008http://dx.doi.org/10.1016/j.isprsjprs.2019.06.008]
Jing J C, Jin H A, Tang B and Li A N. 2019. Intercomparison and evaluation of influencing factors among different LAI products over mountainous areas. Journal of Natural Resources, 34(2): 400-411
景金城, 靳华安, 唐斌, 李爱农. 2019. 山区LAI遥感产品对比分析及影响因子评价. 自然资源学报, 34(2): 400-411 [DOI: 10.31497/zrzyxb.20190215http://dx.doi.org/10.31497/zrzyxb.20190215]
Johnson R L, Peddle D R and Hall R J. 2000. A Modeled-Based Sub-pixel scale mountain terrain normalization algorithm for improved LAI estimation from airborne CASI imagery//Proceedings of the 22nd Canadian Remote Sensing Symposium. Ottawa: Canadian Remote Sensing Society: 415-424.
Kamal M, Phinn S and Johansen K. 2016. Assessment of multi-resolution image data for mangrove leaf area index mapping. Remote Sensing of Environment, 176: 242-254 [DOI: 10.1016/j.rse.2016.02.013http://dx.doi.org/10.1016/j.rse.2016.02.013]
Kondratyev K Y. 1969. Radiation in the Atmosphere. New York: Academic Press
Li A N, Bian J H, Zhang Z J, Zhao W and Yin G F. 2016a. Progresses, opportunities, and challenges of mountain remote sensing research. Jourcal of Remote Sensing, 20(5): 1199-1215
李爱农, 边金虎, 张正健, 赵伟, 尹高飞. 山地遥感主要研究进展, 发展机遇与挑战. 遥感学报, 2016a, 20(05): 1199-1215 [DOI: 10.11834/jrs.20166227http://dx.doi.org/10.11834/jrs.20166227]
Li A N, Yin G F, Jin H A, Bian J H and Zhao W. 2016. Principles and methods for the retrieval of biophysical variables in mountainous areas. Remote Sensing Technology and Application, 31(1): 1-11
李爱农, 尹高飞, 靳华安, 边金虎, 赵伟. 2016b. 山地地表生态参量遥感反演的理论、方法与问题. 遥感技术与应用, 31(1): 1-11 [DOI: 10.11873/j.issn.1004-0323.2016.1.0001http://dx.doi.org/10.11873/j.issn.1004-0323.2016.1.0001]
Li F Q, Jupp D L B, Thankappan M, Lymburner L, Mueller N, Lewis A and Held A. 2012. A physics-based atmospheric and BRDF correction for Landsat data over mountainous terrain. Remote Sensing of Environment, 124: 756–770 [DOI: 10.1016/j.rse.2012.06.018]https://doi.org/https://doi.org/10.1016/j.rse.2012.06.018https://doi.org/https://doi.org/10.1016/j.rse.2012.06.018
Li J. 2010.The study of modeling and parameterization methods for LAI retrieval in mountains area. Beijing: Beijing Normal University
李静. 2010. 面向LAI反演效率的复杂地形区综合建模及参数化方法研究. 北京: 北京师范大学
Li X and Strahler A H. 1992. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing. IEEE Transactions on Geoscience and Remote Sensing, 30(2): 276-292 [DOI: 10.1109/36.134078http://dx.doi.org/10.1109/36.134078]
Li X W and Strahler A H. 1986. Geometric-optical bidirectional reflectance modeling of a conifer forest canopy. IEEE Transactions on Geoscience and Remote Sensing, GE-24(6): 906-919 [DOI: 10.1109/TGRS.1986.289706http://dx.doi.org/10.1109/TGRS.1986.289706]
Lin Q N, Huang H G, Chen L and Chen E X. 2017. Topographic correction method for steep terrain mountain images. Journal of Remote Sensing, 21(5): 776-784
林起楠, 黄华国, 陈玲, 陈尔学. 2017. 陡峭地形山区影像的半经验地形校正. 遥感学报, 21(5): 776-784 [DOI: 10.11834/jrs.20176384http://dx.doi.org/10.11834/jrs.20176384]
Liao Y B, Chen X F, Chen X, Zhang D R, Guan B H and Zhou F. 2011. Effect of topographic correction on the estimation of leaf area index based on Landsat TM. Remote sensing Information, (5): 47-51, 64
廖钰冰, 陈新芳, 陈喜, 张丹荣, 关保华, 周峰. 2011. 地形校正对叶面积指数遥感估算的影响. 遥感信息, (5): 47-51, 64 [DOI: 10.3969/j.issn.1000-3177.2011.05.008http://dx.doi.org/10.3969/j.issn.1000-3177.2011.05.008]
Liu Y, Liu R G and Chen J M. 2012. Retrospective retrieval of long-term consistent global leaf area index (1981—2011) from combined AVHRR and MODIS data. Journal of Geophysical Research, 2012, 117(G4): G04003 [DOI: 10.1029/2012jg002084http://dx.doi.org/10.1029/2012jg002084]
Liu Q H, Yan G J, Jiao Z T, Xiao Q, Wen J G, Liang S L and Wang J D. 2019. Geometric-optical remote sensing modeling to quantitative remote sensing theory and methodology development: in memory of academician Li Xiaowen. Journal of Remote Sensing, 23(1): 1-10
柳钦火, 阎广建, 焦子锑, 肖青, 闻建光, 梁顺林, 王锦地. 2019. 发展几何光学遥感建模理论, 推动定量遥感科学前行——深切缅怀李小文院士. 遥感学报, 23(1): 1-10 [DOI: 10.11834/jrs.20198077http://dx.doi.org/10.11834/jrs.20198077]
Liu Y, Liu R G, Chen J M, Cheng X and Zheng G. 2013. Current status and perspectives of leaf area index retrieval from optical remote sensing data. Journal of Geo-information Science, 15(5): 734-743
刘洋, 刘荣高, 陈镜明, 程晓, 郑光. 2013. 叶面积指数遥感反演研究进展与展望. 地球信息科学学报, 15(5): 734-743 [DOI: 10.3724/SP.J.1047.2013.00734http://dx.doi.org/10.3724/SP.J.1047.2013.00734]
Luisa E M, Frédéric B and Marie W. 2008. Slope correction for LAI estimation from gap fraction measurements. Agricultural and Forest Meteorology, 148(10): 1553-1562 [DOI: 10.1016/j.agrformet.2008.05.005http://dx.doi.org/10.1016/j.agrformet.2008.05.005]
Mousivand A, Verhoef W, Menenti M and Gorte B. 2015. Modeling top of atmosphere radiance over heterogeneous non-Lambertian rugged terrain. Remote Sensing, 7(6): 8019-8044 [DOI: 10.3390/rs70608019http://dx.doi.org/10.3390/rs70608019]
Nichol J, Hang L K and Sing W M. 2006. Empirical correction of low sun angle images in steeply sloping terrain: a slope-matching technique. International Journal of Remote Sensing, 27(3): 629-635 [DOI: 10.1080/02781070500293414http://dx.doi.org/10.1080/02781070500293414]
Olyphant G A. 1986a. Longwave radiation in mountainous areas and its influence on the energy balance of alpine snowfields. Water Resources Research, 22(1): 62-66 [DOI: 10.1029/wr022i001p00062http://dx.doi.org/10.1029/wr022i001p00062]
Olyphant G A. 1986b. The components of incoming radiation within a mid-latitude alpine watershed during the snowmelt season. Arctic and Alpine Research, 18(2): 163-169 [DOI: 10.2307/1551125http://dx.doi.org/10.2307/1551125]
Park S H and Jung H S. 2015. Comparative performance analysis between topographic correction models for landsat-8 OLI images. 36th Asian Conference on Remote Sensing (ACRS2015), 1:315-320.
Park S H, Jung H S, Choi J and Jeon S. 2017. A quantitative method to evaluate the performance of topographic correction models used to improve land cover identification. Advances in Space Research, 60(7): 1488-1503 [DOI: 10.1016/j.asr.2017.06.054http://dx.doi.org/10.1016/j.asr.2017.06.054]
Pasolli L, Asam S, Castelli M, Bruzzone L, Wohlfahrt G, Zebisch M and Notarnicola C. 2015. Retrieval of leaf area index in mountain grasslands in the alps from MODIS satellite imagery. Remote Sensing of Environment, 165: 159-174 [DOI: 10.1016/j.rse.2015.04.027http://dx.doi.org/10.1016/j.rse.2015.04.027]
Proy C, Tanré D and Deschamps P Y. 1989. Evaluation of topographic effects in remotely sensed data. Remote Sensing of Environment, 30(1): 21-32 [DOI: 10.1016/0034-4257(89)90044-8http://dx.doi.org/10.1016/0034-4257(89)90044-8]
Qi J B, Xie D H, Guo D S and Yan G J. 2017. A large-scale emulation system for realistic three-dimensional (3-D) forest simulation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(11): 4834-4843 [DOI: 10.1109/JSTARS.2017.2714423http://dx.doi.org/10.1109/JSTARS.2017.2714423]
Reeder D H. 2002. Topographic Correction of Satellite Images: theory and Application. Hanover: Dartmouth College
Richter R and Schläpfer D. 2002. Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: atmospheric/topographic correction. International Journal of Remote Sensing, 2002, 23(13): 2631-2649 [DOI: 10.1080/01431160110115834http://dx.doi.org/10.1080/01431160110115834]
Richter R, Kellenberger T and Kaufmann H. 2009. Comparison of topographic correction methods. Remote Sensing, 1(3): 184-196 [DOI: 10.3390/rs1030184http://dx.doi.org/10.3390/rs1030184]
Richter R. 1998. Correction of satellite imagery over mountainous terrain. Applied Optics, 37(18): 4004-4015 [DOI: 10.1364/AO.37.004004http://dx.doi.org/10.1364/AO.37.004004]
Sandmeier S and Itten K I. 1997. A physically-based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain. IEEE Transactions on Geoscience and Remote Sensing, 35(3): 708-717 [DOI: 10.1109/36.581991http://dx.doi.org/10.1109/36.581991]
Schaaf C B, Li X W and Strahler A H. 1994. Topographic effects on bidirectional and hemispherical reflectances calculated with a geometric-optical canopy model. IEEE Transactions on Geoscience and Remote Sensing, 32(6): 1186-1193 [DOI: 10.1109/36.338367http://dx.doi.org/10.1109/36.338367]
Shepherd J D and Dymond J R. 2003. Correcting satellite imagery for the variance of reflectance and illumination with topography. International Journal of Remote Sensing, 24(17): 3503-3514 [DOI: 10.1080/01431160210154029http://dx.doi.org/10.1080/01431160210154029]
Singh S, Sharma J K and Mishra V D. 2011. Comparison of different topographic correction methods using AWiFS Satellite data. International Journal of Advanced Engineering Sciences and Technologies, 7(1): 85-91
Singh S and Talwar R. 2013. A systematic survey on different topographic correction techniques for rugged terrain satellite imagery. International Journal of Electronics and Communication Technology, 4(5): 14-18
Smith J A, Lin T L and Ranson K J. 1980. The Lambertian assumption and Landsat data. Photogrammetric Engineering and Remote Sensing, 46(9): 1183-1189
Soenen S A, Peddle D R and Coburn C A. 2005. SCS+C: a modified Sun-Canopy-Sensor topographic correction in forested terrain. IEEE Transactions on Geoscience and Remote Sensing, 43(9): 2148-2159. [DOI: 10.1109/TGRS.2005.852480http://dx.doi.org/10.1109/TGRS.2005.852480]
Soenen S A, Peddle D R, Hall R J, Coburn C A and Hall F G. 2010. Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain. Remote Sensing of Environment, 114(7): 1325-1337 [DOI: 10.1016/j.rse.2009.12.012http://dx.doi.org/10.1016/j.rse.2009.12.012]
Song J L, Wang J D, Shuai Y M and Xiao Z Q. 2009. The research on bidirectional reflectance computer simulation of forest canopy at pixel scale. Spectroscopy and Spectral Analysis, 29(8): 2141-2147
宋金玲, 王锦地, 帅艳民, 肖志强. 2009. 像元尺度林地冠层二向反射特性的模拟研究. 光谱学与光谱分析, 29(8): 2141-2147) [DOI: 10.3964/j.issn.1000-0593(200908-2141-07http://dx.doi.org/10.3964/j.issn.1000-0593(2009)08-2141-07]
Teillet P M, Guindon B and Goodenough D G. 1982. On the slope-aspect correction of multispectral scanner data. Canadian Journal of Remote Sensing, 8(2): 84-106 [DOI: 10.1080/07038992.1982.10855028http://dx.doi.org/10.1080/07038992.1982.10855028]
Temps R C and Coulson K L. 1977. Solar radiation incident upon slopes of different orientations. Solar Energy, 19(2): 179-184 [DOI: 10.1016/0038-092x(77)90056-1http://dx.doi.org/10.1016/0038-092x(77)90056-1]
Tong Q X. 2005. Earth observation from space and human demension for global change studies. Advance in Earth Sciences, 20(1): 1-5
童庆禧. 2005. 空间对地观测与全球变化的人文因素. 地球科学进展, 20(1): 1-5 [DOI: 10.3321/j.issn:1001-8166.2005.01.002http://dx.doi.org/10.3321/j.issn:1001-8166.2005.01.002]
Verger A, Baret F, Weiss M, Kandasamy S and Vermote E. 2013. The CACAO method for smoothing, gap filling, and characterizing seasonal anomalies in satellite time series. IEEE Transactions on Geoscience and Remote Sensing, 51(4), 1963-1972 [DOI: 10.1109/TGRS.2012.2228653http://dx.doi.org/10.1109/TGRS.2012.2228653]
Wang G X, Deng W, Yang Y and Cheng G W. 2011. The advances, priority and developing trend of alpine ecology. Journal of Mountain Science, 29(2): 129-140
王根绪, 邓伟, 杨燕, 程根伟. 2011. 山地生态学的研究进展、重点领域与趋势. 山地学报, 29(2): 129-140 [DOI: 10.3969/j.issn.1008-2786.2011.02.001http://dx.doi.org/10.3969/j.issn.1008-2786.2011.02.001]
Wei X Q, Gu X F, Meng Q Y, Yu T, Zhou X, Wei Z, Jia K and Wang C M. 2017. Leaf area index estimation using Chinese GF-1 wide field view data in an agriculture region. Sensors, 2017, 17(7): 1593 [DOI: 10.3390/s17071593http://dx.doi.org/10.3390/s17071593]
Wen J G, Liu Q H, Liu Q, Xiao Q and Li X W. 2009. Parametrized BRDF for atmospheric and topographic correction and albedo estimation in Jiangxi rugged terrain, China. International Journal of Remote Sensing, 30(11): 2875-2896 [DOI: 10.1080/0143116080 2558618http://dx.doi.org/10.1080/01431160802558618]
Wen J G, Liu Q, Xiao Q, Liu Q H, You D Q, Hao D L, Wu S B, and Lin X W. 2018. Characterizing land surface anisotropic reflectance over rugged terrain: a review of concepts and recent developments. Remote Sensing, 10(3): 370 [DOI: 10.3390/rs10030370http://dx.doi.org/10.3390/rs10030370]
Wu S B, Wen J G, Lin X W, Hao D L, You D Q, Xiao Q, Liu Q H and Yin T G. 2019. Modeling discrete forest anisotropic reflectance over a sloped surface with an extended GOMS and SAIL model. IEEE Transactions on Geoscience and Remote Sensing, 57(2): 944-957 [DOI: 10.1109/TGRS.2018.2863605http://dx.doi.org/10.1109/TGRS.2018.2863605]
Xia X Q, Tian Q J and Du F L. 2004. Analysis of topographical effect on retrieval of LAI from remotely sensed data. Remote Sensing Information, (2): 16-19, 37
夏学齐, 田庆久, 杜凤兰. 2004. 遥感提取叶面积指数的地形影响分析. 遥感信息, (2): 16-19, 37 [DOI: 10.3969/j.issn.1000-3177.2004.02.005http://dx.doi.org/10.3969/j.issn.1000-3177.2004.02.005]
Xiang Y, Xiao Z Q, Liang S L, Wang J D and Song J L. 2014. Validation of global land surface satellite (GLASS) leaf area index product. Journal of Remote Sensing, 18(3): 573-596
向阳,肖志强,梁顺林,王锦地,宋金玲. 2014. GLASS叶面积指数产品验证. 遥感学报, 18(3): 573-596 [DOI: 10.11834/jrs.20143117http://dx.doi.org/10.11834/jrs.20143117]
Xiao Z Q, Wang T T, Liang S L and Sun R. 2016. Estimating the fractional vegetation cover from GLASS leaf area index product. Remote Sensing, 8(4), 337 [DOI: 10.3390/rs8040337http://dx.doi.org/10.3390/rs8040337]
Yan G J, Hu R H, Luo J H, Weiss M, Jiang H L, Mu X H, Xie D H and Zhang W M. 2019. Review of indirect optical measurements of leaf area index: recent advances, challenges, and perspectives. Agricultural and Forest Meteorology, 265: 390-411. [DOI: 10.1016/j.agrformet.2018.11.033http://dx.doi.org/10.1016/j.agrformet.2018.11.033]
Yan G J, Zhu C G, Guo J, Wang J D and Li X W. 2000. A model based radiative transfer algorithm to correct remotely sensed image in mountainous area. Journal of Image and Graphics, 5(1): 11-15
闫广建, 朱重光, 郭军, 王锦地, 李小文. 2000. 基于模型的山地遥感图象辐射订正方法. 中国图象图形学报, 5(1): 11-15 [DOI: 10.3969/j.issn.1006-8961.2000.01.003http://dx.doi.org/10.3969/j.issn.1006-8961.2000.01.003]
Yang Y S, Li A N, Jin H A, Yin G F, Zhao W, Lei G B and Bian J H. 2016. Intercomparison among GEOV1, GLASS and MODIS LAI products over mountainous area in southwestern China. Remote Sensing Technology and Application, 31(3): 438-450
杨勇帅, 李爱农, 靳华安, 尹高飞, 赵伟, 雷光斌, 边金虎. 2016. 中国西南山区GEOV1、GLASS和MODIS LAI产品的对比分析. 遥感技术与应用, 31(3): 438-450 [DOI: 10.11873/j.issn.1004-0323.2016.3.0438http://dx.doi.org/10.11873/j.issn.1004-0323.2016.3.0438]
Yin G F, Cao B, Li J, Fan W L, Zeng Y L, Xu B D and Zhao W. 2020a. Path length correction for improving leaf area index measurements over sloping terrains: a deep analysis through computer simulation. IEEE Transactions on Geoscience and Remote Sensing, 58(7): 4573-4589 [DOI: 10.1109/tgrs.2019.2963366http://dx.doi.org/10.1109/tgrs.2019.2963366]
Yin G F, Li A N, Wu S B, Fan W L, Zeng Y L, Yan K, Xu B D, Li J and Liu Q H. 2018. PLC: a simple and semi-physical topographic correction method for vegetation canopies based on path length correction. Remote Sensing of Environment, 215: 184-198 [DOI: 10.1016/j.rse.2018.06.009http://dx.doi.org/10.1016/j.rse.2018.06.009]
Yin G F, Li A N, Zhao W, Jin H A, Bian J H, Wu S B. 2017. Modeling canopy reflectance over sloping terrain based on path length correction. IEEE Transactions on Geoscience and Remote Sensing, 55(8): 4597-4609 [DOI: 10.1109/TGRS.2017.2694483http://dx.doi.org/10.1109/TGRS.2017.2694483]
Yin G F, Ma L, Zhao W, Zeng Y L, Xu B D and Wu S B. 2020b. Topographic Correction for Landsat 8 OLI vegetation reflectances through path length correction: a comparison between explicit and implicit method. IEEE Transactions on Geoscience and Remote Sensing, 1-13(accepted) [DOI: 10.1109/TGRS.2020.2987985http://dx.doi.org/10.1109/TGRS.2020.2987985]
Yu W T, Li J, Liu Q H, Yin G F, Zeng Y L, Lin S R and Zhao J. 2020. A Simulation-based Analysis of topographic effects on LAI inversion over sloped terrain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 794-806. [DOI: 10.1109/JSTARS.2020.2970999http://dx.doi.org/10.1109/JSTARS.2020.2970999]
Zhang H L, Ni S X and Zhang J. 2001. Progress on the study of topographic normalization methods on remotely sensed imagery on abroad. Remote Sensing Information, (3): 24-26
张洪亮, 倪绍祥, 张军. 2001. 国外遥感图像的地形归一化方法研究进展. 遥感信息, (3): 24-26 [DOI: 10.3969/j.issn.1000-3177.2001.03.005]
Zhang Z M, He G J, Zhang X M, Long T F, Wang G Z and Wang M M. 2018. A coupled atmospheric and topographic correction algorithm for remotely sensed satellite imagery over mountainous terrain. Giscience and Remote Sensing, 55(3): 400-416 [DOI: 10.1080/15481603.2017.1382066http://dx.doi.org/10.1080/15481603.2017.1382066]
Zhong X H and Liu S Z 2014. China Mountain Classification Research. Journal of Mountain Science, 32(002): 129-140
钟祥浩, 刘淑珍. 2014. 中国山地分类研究. 山地学报, 32(002):129-140 [DOI: 10.3969/j.issn.1008-2786.2014.02.001http://dx.doi.org/10.3969/j.issn.1008-2786.2014.02.001]
相关作者
相关机构