滑坡蠕变与遥感影像上植被异常关系
Relationship between landslide creep and vegetation anomalies in remote sensing images
- 2020年24卷第6期 页码:776-786
纸质出版日期: 2020-06-07
DOI: 10.11834/jrs.20208330
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-06-07 ,
扫 描 看 全 文
郭忻怡,郭擎,冯钟葵.2020.滑坡蠕变与遥感影像上植被异常关系.遥感学报,24(6): 776-786
GUO Xinyi,GUO Qing,FENG Zhongkui. 2020. Relationship between landslide creep and vegetation anomalies in remote sensing images. Journal of Remote Sensing(Chinese),24(6): 776-786
以滑坡蠕变阶段坡体的蠕变会引起环境条件的改变,进而影响植被生长状况的野外考察客观现实为依据,提出一种间接监测滑坡变化的新方法。利用高分辨率光学遥感技术,对滑坡蠕变阶段遥感影像上坡体上覆植被的异常特征进行判识,建立遥感影像上植被异常与滑坡蠕变的关系,反映滑坡的演化过程,弥补GPS技术、InSAR技术及部分地面监测手段在地势高、地形陡峭、植被茂盛等条件下监测工作的不足,为后续的滑坡预测研究提供帮助。以植被覆盖度较高的新磨村山体高位滑坡为例,首先,对研究区域进行分区;其次,计算各分区的植被覆盖度;最后,利用植被覆盖度分析遥感影像上的植被异常与滑坡蠕变的关系,并根据滑后遥感影像和实地考察情况进行验证。结果显示,2014年—2016年,滑坡的主要物源区、变形体上方细长局部崩滑区和泉眼及冲沟周边的植被覆盖度出现明显的下降,即随着滑坡发生时间的临近,植被受滑坡蠕变的影响变大,植被生长状况变差;而且随着距裸地等滑坡风险较大区域的距离增大,植被受滑坡蠕变的影响变小,植被生长状况变好。这表明,植被异常与滑坡蠕变存在明显的时空相关性,体现了滑坡蠕变阶段遥感影像上植被异常与滑坡蠕变的内在联系,反映了滑坡逐步失稳的演化过程,为进一步预测滑坡的发生提供依据。
Landslides bring great peril to mountainous areas in China. In recent years
catastrophic high-position landslides often occur after the Wenchuan earthquake. The landslides occurred in the mountains that have high or steep terrain and dense vegetation coverage. A typical case in Xinmocun occurred in Diexi Town
Maoxian County
Sichuan Province on June 24
2017. Given the characteristics of high position and concealment
this type of landslide is difficult to be detected by GPS
InSAR
and other traditional investigation methods. Certain technologies should be promoted and applied to detect and prevent such high concealed landslides at high positions. The optical remote sensing technology
owning a special capability with large-range
non-contact
periodic coverage
and abundant data
has great potential in making up for the limitations of the above methods
which is of great significance to disaster prevention and mitigation. The creep of landslide causes changes in environmental conditions
such as loosening of rock mass
change in soil nutrient
and uneven distribution of water. Changes in environmental conditions cause vegetation growth to vary. In situ investigation is conducted on the anomaly of vegetation growth before landslide. Therefore
on the basis of vegetation anomaly
this study establishes a new indirect landslide monitoring method to prepare for the study of landslide prediction. This method identifies vegetation anomaly on the landslide body using high-resolution optical remote sensing images
establishes the relationship between the creep of landslides and vegetation anomaly
and analyzes the evolution process of landslide creep at the stage of potential landslides.
The Xinmocun landslide
which has high vegetation coverage
is selected as an example for conducting experiments. First
according to the comprehensive interpretation of optical remote sensing images and geological data
the Xinmocun landslide area is divided into upper landslide hazard
middle potential impact
and lower human activity. Second
vegetation coverage in each area is calculated using three-time series optical remote sensing images (June 18
2014; June 21
2015; and June 28
2016) before landslides. Finally
the relationship between vegetation growth status and landslide creep is analyzed and verified using the remote sensing images and geological survey after the landslide.
Experiments on high-resolution optical remote sensing images
which were conducted at the same period of three years before the landslide
detected changes in vegetation. In the upper landslide hazard area
the main landslide source and the narrow slump areas above the deformable body were affected by the creep of landslide. Hence
vegetation coverage declined evidently from 2014 to 2016. With the increase of distance from the edge of the bare land
the smaller the effect of landslide creep is
and the better the status of vegetation gradually becomes. With the time of landslide approaching
the greater the effect of landslide creep is
and the worse the status of vegetation in the same position becomes. In the middle potential impact area
the vegetation coverage around the springs and gullies declines with the greater effect of landslide creep as the time of landslide approaches. In the lower human activity area
the variation of vegetation coverage has no obvious regularity because of complex factors.
Through experiments of optical remote sensing data
the conclusions are drawn as follows. The status of vegetation in the upper landslide hazard area and the middle potential impact area has significant temporal and spatial correlation with landslide creep. This result reflects the inherent relationship between vegetation growth and the creep of landslides
which can be used to predict the occurrence of landslides.
遥感新磨村滑坡分区植被覆盖度植被异常滑坡监测GPS技术InSAR技术
remote sensingXinmocun landslideregional divisionvegetation coveragevegetation anomalylandslide monitoringGPSInSAR
Ding Y L, Lei S G, Bian Z F and Qie C L. 2013. Distortion-resistant ability of Tetraena Mongolica root at the mining subsidence area. Journal of China University of Mining and Technology, 42(6): 970-974, 981
丁玉龙, 雷少刚, 卞正富, 郄晨龙. 2013. 开采沉陷区四合木根系抗变形能力分析. 中国矿业大学学报, 42(6): 970-974, 981 [DOI: 10.3969/j.issn.1000-1964.2013.06.013http://dx.doi.org/10.3969/j.issn.1000-1964.2013.06.013]
Du T, Bi Y L, Zou H, Zheng J L and Liu S. 2013. Effects of surface cracks caused by coal mining on microorganisms and enzyme activities in rhizosphere of Salix psammophila. Journal of China Coal Society, 38(12): 2221-2226
杜涛, 毕银丽, 邹慧, 郑娇龙, 刘生. 2013. 地表裂缝对沙柳根际微生物和酶活性的影响. 煤炭学报, 38(12): 2221-2226 [DOI: 10.13225/j.cnki.jccs.2013.12.001http://dx.doi.org/10.13225/j.cnki.jccs.2013.12.001]
Fan Q S, Tang C L, Chen Y and Zhang X D. 2006. Applications of GPS and InSAR in monitoring of landslide studies. Science of Surveying and Mapping, 31(5): 60-62
范青松, 汤翠莲, 陈于, 张晓东. 2006. GPS与InSAR技术在滑坡监测中的应用研究. 测绘科学, 31(5): 60-62 [DOI: 10.3771/j.issn.1009-2307.2006.05.019http://dx.doi.org/10.3771/j.issn.1009-2307.2006.05.019]
Geospatial Data Cloud. 2015. Details of GDEMV2 digital elevation data with 30m resolution [EB/OL].http://www.gscloud.cn/sources/dataset_desc/421?cdataid=302&pdataid=10&datatype=gdem_utm2(http://www.gscloud.cn/sources/dataset_desc/421?cdataid=302&pdataid=10&datatype=gdem_utm2(
地理空间数据云. 2015. GDEMV2 30M分辨率数字高程数据详细信息[EB/OL].http://www.gscloud.cn/sources/dataset_desc/421? cdataid=302 & pdataid=10&datatype=gdem_utm2http://www.gscloud.cn/sources/dataset_desc/421? cdataid=302 & pdataid=10&datatype=gdem_utm2[2018-08-15]
He S M, Bai X Q, Ouyang C J and Wang D P. 2017. On the survey of giant landslide at Xinmo village of Diexi town, Maoxian country, Sichuan Province, China. Mountain Research, 35(4): 598-603
何思明, 白秀强, 欧阳朝军, 王东坡. 2017. 四川省茂县叠溪镇新磨村特大滑坡应急科学调查. 山地学报, 35(4): 598-603 [DOI: 10.16089/j.cnki.1008-2786.000258http://dx.doi.org/10.16089/j.cnki.1008-2786.000258]
Kaufman Y J and Tanre D. 1992. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, 30(2): 261-270 [DOI: 10.1109/36.134076http://dx.doi.org/10.1109/36.134076]
Li K, Sun Y D, Jiang B H, Guo J J, Wang Y Q and Yue D X. 2014. Analysis on spatial-temporal patterns of the vegetation coverage and landslides in Bailongjiang River Basin based on the Dimidiate Pixel Model. Journal of Lanzhou University (Natural Sciences), 50(3): 376-382
李凯, 孙悦迪, 江宝骅, 郭建军, 汪玉琼, 岳东霞. 2014. 基于像元二分法的白龙江流域植被覆盖度与滑坡时空格局分析. 兰州大学学报(自然科学版), 50(3): 376-382 [DOI: 10.13885/j.issn.0455-2059.2014.03.013http://dx.doi.org/10.13885/j.issn.0455-2059.2014.03.013]
Li M M. 2003. The Method of Vegetation Fraction Estimation by Remote Sensing. Beijing: The Graduate University of Chinese Academy of Sciences (Institute of Remote Sensing Applications).
李苗苗. 2003. 植被覆盖度的遥感估算方法研究. 北京: 中国科学院研究生院(遥感应用研究所)
Liu C Z. 2010. Mechanism analysis on the Jiweishan rockfall disaster happened in Wulong, Chongqing, June 5, 2009. Journal of Engineering Geology, 18(3): 297-304
刘传正. 2010. 重庆武隆鸡尾山危岩体形成与崩塌成因分析. 工程地质学报, 18(3): 297-304 [DOI: 10.3969/j.issn.1004-9665.2010.03.002http://dx.doi.org/10.3969/j.issn.1004-9665.2010.03.002]
Lu T, Zeng H C, Luo Y, Wang Q, Shi F S, Sun G, Wu Y and Wu N. 2012. Monitoring vegetation recovery after China’s May 2008 Wenchuan earthquake using Landsat TM time-series data: a case study in Mao County. Ecological Research, 27(5): 955-966 [DOI: 10.1007/s11284-012-0976-yhttp://dx.doi.org/10.1007/s11284-012-0976-y]
Shao C J, Li P Y, Li Y, Lan H X, Zhou R J, Deng T, Yan Z K, Yan L and Li L J. 2017. Sliding mechanism of Maoxian landslide and geological condition analysis of formation of post-earthquake landslide. Journal of Chengdu University of Technology (Science and Technology Edition), 44(4): 385-402
邵崇建, 李芃宇, 李勇, 兰恒星, 周荣军, 邓涛, 颜照坤, 闫亮, 李立军. 2017. 茂县滑坡的滑动机制与震后滑坡形成的地质条件. 成都理工大学学报(自然科学版), 44(4): 385-402 [DOI: 10.3969/j.issn.1671-9727.2017.04.01http://dx.doi.org/10.3969/j.issn.1671-9727.2017.04.01]
Shen J, Shang Y Q and Xu D W. 2008. Study on the relationship between landslides and vegetation. Journal of Anhui Agricultural Sciences, 36(12): 5169-5170, 5181
申健, 尚衍强, 徐大伟. 2008. 滑坡灾害与植被的相互关系探讨. 安徽农业科学, 36(12): 5169-5170, 5181 [DOI: 10.3969/j.issn.0517-6611.2008.12.156http://dx.doi.org/10.3969/j.issn.0517-6611.2008.12.156]
Tang Y, Wang L J, Ma G C, Jia H J and Jin X. 2019. Emergency monitoring of high-level landslide disasters in Jinsha River using domestic remote sensing satellites. Journal of Remote Sensing, 23(2): 252-261
唐尧, 王立娟, 马国超, 贾虎军, 靳晓. 2019. 利用国产遥感卫星进行金沙江高位滑坡灾害灾情应急监测. 遥感学报, 23(2): 252-261 [DOI: 10.11834/jrs.20198405http://dx.doi.org/10.11834/jrs.20198405]
TRE ALTAMIRA. 2017. Data in focus: precursor of Maoxian landslide measured from space[EB/OL]. (2018-08-10)[2017-06-29].http://earsc.org/news/data-in-focus-precursor-of-maoxian-landsli-de-measured-from-spacehttp://earsc.org/news/data-in-focus-precursor-of-maoxian-landsli-de-measured-from-space
Wang G J, Xie M W, Qiu C and Esaki T. 2010. Application of D-INSAR technique to landslide monitoring. Rock and Soil Mechanics, 31(4): 1337-1344
王桂杰, 谢谟文, 邱骋, 江崎哲郎. 2010. D-INSAR技术在大范围滑坡监测中的应用. 岩土力学, 31(4): 1337-1344 [DOI: 10.16285/j.rsm.2010.04.010http://dx.doi.org/10.16285/j.rsm.2010.04.010]
Wang Z H. 2012. Remote Sensing for Landslide. Beijing: Science Press
王治华. 2012. 滑坡遥感. 北京: 科学出版社
Wen M S, Chen H Q, Zhang M Z, Chu H L, Wang W P, Zhang N and Huang Z. 2017. Characteristics and formation mechanism analysis of the “6·24” catastrophic landslide of the June 24 of 2017, at Maoxian, Sichuan. The Chinese Journal of Geological Hazard and Control, 28(3): 1-7
温铭生, 陈红旗, 张鸣之, 褚宏亮, 王文沛, 张楠, 黄喆. 2017. 四川茂县“6·24”特大滑坡特征与成因机制分析. 中国地质灾害与防治学报, 28(3): 1-7 [DOI: 10.16031/j.cnki.issn.1003-8035.2017.03.01http://dx.doi.org/10.16031/j.cnki.issn.1003-8035.2017.03.01]
Xu Q, Dong X J, Deng M L, Chen L and Hu Z M. 2010. The Ermanshan rock slide-debris flow of July 27, 2010 in Hanyuan, Sichuan: characteristics and failure mechanism. Journal of Engineering Geology, 18(5): 609-622
许强, 董秀军, 邓茂林, 陈龙, 胡泽铭. 2010. 2010年7·27四川汉源二蛮山滑坡-碎屑流特征与成因机理研究. 工程地质学报, 18(5): 609-622 [DOI: 10.3969/j.issn.1004-9665.2010.05.003http://dx.doi.org/10.3969/j.issn.1004-9665.2010.05.003]
Yang M D, Chen S C and Tsai H P. 2017. A long-term vegetation recovery estimation for Mt. Jou-Jou using multi-date SPOT 1, 2, and 4 images. Remote Sensing, 9(9): 893 [DOI: 10.3390/rs9090893http://dx.doi.org/10.3390/rs9090893]
Yang M S, Li S S and Feng Z K. 2018. Post-seismic landslide extraction by combining texture analysis and emissivity estimating. Journal of Remote Sensing, 22(S1): 212-223
杨明生, 李山山, 冯钟葵. 2018. 结合纹理特征分析与比辐射率估计的震后滑坡提取. 遥感学报, 22(S1): 212-223 [DOI: 10.11834/jrs.20187261http://dx.doi.org/10.11834/jrs.20187261]
Yin Y P, Wang W P, Zhang N, Yan J K, Wei Y J and Yang L W. 2017. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area: a case study of the Xinmo landslide in Maoxian County, Sichuan Province. Geology in China, 44(5): 827-841
殷跃平, 王文沛, 张楠, 闫金凯, 魏云杰, 杨龙伟. 2017. 强震区高位滑坡远程灾害特征研究——以四川茂县新磨滑坡为例. 中国地质, 44(5): 827-841
Yin Z Q, Xu Y Q and Zhao W J. 2014. Sanxi village landslide in Dujiangyan, Sichuan province on July 10, 2013. Journal of Engineering Geology, 22(2): 309-318
殷志强, 徐永强, 赵无忌. 2014. 四川都江堰三溪村“7·10”高位山体滑坡研究. 工程地质学报, 22(2): 309-318 [DOI: 10.13544/j.cnki.jeg.2014.02.018http://dx.doi.org/10.13544/j.cnki.jeg.2014.02.018]
相关作者
相关机构