光学遥感影像道路提取的方法综述
Development and prospect of road extraction method for optical remote sensing image
- 2020年24卷第7期 页码:804-823
纸质出版日期: 2020-07-07
DOI: 10.11834/jrs.20208360
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-07-07 ,
扫 描 看 全 文
戴激光,王杨,杜阳,朱婷婷,谢诗哲,李程程,方鑫鑫.2020.光学遥感影像道路提取的方法综述.遥感学报,24(7): 804-823
Dai J G,Wang Y,Du Y,Zhu T T,Xie S Z,Li C C and Fang X X. 2020. Development and prospect of road extraction method for optical remote sensing image. Journal of Remote Sensing(Chinese),24(7): 804-823[DOI:10.11834/jrs.20208360]
道路信息在多个应用领域中发挥着基础性的作用。光学遥感影像能够以较高的空间分辨率对目标地物进行精细化解译,可大幅增强地物目标的提取能力。充分利用光学遥感影像丰富的几何纹理信息,进行道路的精确提取,已成为当前遥感学界研究的热点与前沿问题。鉴于此,本文依据近年来大量相关文献,对现有的理论与方法进行了归类与总结,通过分析不同方法采用的道路特征组合,将道路提取方法划分为模板匹配、知识驱动、面向对象和深度学习4类方法,简要介绍了道路提取普适性的评价指标并对部分方法进行了分析与评价;最后对现有光学遥感影像道路提取的发展提出了建议和展望。
Road extraction from remote sensing image has important practical value. It presents a major issue in the field of remote sensing. In recent years
the geometric texture of the target objects of aviation and satellite optical images has been refined in the wake of the rapid development of aviation technology. Thus
this technology provides a sufficient basis for automatic extraction of road information. However
full automation of road extraction through existing methods is difficult. In view of this issue
this study collects and synthesizes the existing methods on the basis of a large number of related literature in recent years. Ultimately
these road extraction methods are divided into four categories: template matching
knowledge-driven
object-oriented
and deep learning.
Template matching methods can be generally divided into rule template and variable template according to template type. The difference between the two types is whether the template can be drawn with regular graphics. Template matching mainly consists of the following three steps: template design
measure analysis
and location update. The template design can usually be set manually or by certain rules. Then
the target template is given in the measure analysis. Furthermore
the extreme value of the region is found by the measure function within the defined area. Lastly
the location of the road centerline is dynamically updated.
Roads
as artificial ruled features
provide large information. Hence
knowledge-driven methods based on relevant knowledge are used in road extraction work. On the basis of the relationship between knowledge and road
this study divides the knowledge-driven methods by three kinds: geometric knowledge
context knowledge
and auxiliary knowledge. Three methods are described as follows: (1) Geometric knowledge. The model is mainly constructed on the basis of the geometric features of the road. (2) Contextual knowledge. The method utilizes road-related auxiliary knowledge (motor vehicles
trees
zebra crossings
et al.) to assist in identifying the road. (3) Assisting knowledge. Road extraction is guided by using multisource remote sensing data
vector data
GPS data
navigation data
and public source data.
With the rapid increase of spatial resolution of optical remote sensing images
object-oriented methods have gradually become one of key methods in road extraction. First
the method selects the spectral and geometric feature criteria to segment image. Second
the geometric radiation similarity criterionis used to classify the segmentation region. Finally
the road extraction results are released by post-processing methods
such as mathematical morphology
matching tracking
and tensor voting.
Road extraction research belongs to the problem of remote sensing image interpretation
whereas deep learning supplies a new opportunity for satellite image interpretation in a semantic direction. Deep learning extracts road information with high precision through convolution
pooling
and training. Nevertheless
road breakage and mistaken extraction problems still exist.
At the end of the study
the direction of development of road extraction is envisioned. Two main trends are proposed: (1) a multimethod complementary road extraction system and (2) deep integration of deep learning and traditional methods. Thus
the detection area should be studied further.
光学遥感影像道路提取模板匹配知识驱动面向对象深度学习
opticremote sensing imageryroad extractiontemplate matchingknowledge-drivenobject-orienteddeep learning
Alshehhi R and Marpu P R . 2017. Hierarchical graph-based segmentation for extracting road networks from high-resolution satellite images. ISPRS Journal of Photogrammetry and Remote Sensing, 126: 245-260 [DOI: 10.1016/j.isprsjprs.2017.02.008http://dx.doi.org/10.1016/j.isprsjprs.2017.02.008 ]
Alshehhi R, Marpu P R, Lee Woon W L and Mura M D . 2017. Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 130: 139-149 [DOI: 10.1016/j.isprsjprs.2017.05.002http://dx.doi.org/10.1016/j.isprsjprs.2017.05.002 ]
Ameri F and Valadan Zoej M J . 2015. Road vectorisation from high-resolution imagery based on dynamic clustering using particle swarm optimisation. Photogrammetric Record, 30(152): 363-386 [DOI: 10.1111/phor.12123http://dx.doi.org/10.1111/phor.12123 ]
Amini J, Lucas C, Saradjian M, Azizi A and Sadeghian S . 2002. Fuzzy logic system for road identification using IKONOS images. The Photogrammetric Record, 17(99): 493-503 [DOI: 10.1111/0031-868X.00201http://dx.doi.org/10.1111/0031-868X.00201 ]
Auclair-Fortier M F, Ziou D, Armenakis C and Wang S . 1999. Survey of Work on Road Extraction in Aerial and Satellite Images. University of Sherbrooke: 6-11
Baatz M and Schäpe A . 2000. Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation//Proceedings of Angewandte Geographische Informationsverarbeitung XII. Heidelberg: Wichmann: 12-23
Babaali K O, Zigh E, Djebbouri M and Kadiri M . 2014. Survey of some new road extraction methods. The International Journal of Engineering and Science (IJES), 3(11): 28-33
Bajcsy R and Tavakoli M . 1976. Computer recognition of roads from satellite pictures. IEEE Transactions on Systems, Man, and Cybernetics, SMC- 6(9): 623-637 [DOI: 10.1109/TSMC.1976.4309568http://dx.doi.org/10.1109/TSMC.1976.4309568 ]
Baumgartner A, Steger C, Mayer H, Eckstein W and Ebner H . 1999. Automatic road extraction based on multi-scale, grouping, and context. Photogrammetric Engineering and Remote Sensing, 65(7): 777-785.
Blaschke T, Hay G J, Kelly M, Lang S, Hofmann P, Addink E, Queiroz Feitosa R, van der Meer F, van der Werff H, van Coillie F and Tiede D . 2014. Geographic object-based image analysis–towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 87: 180-191[DOI: 10.1016/j.isprsjprs.2013.09.014http://dx.doi.org/10.1016/j.isprsjprs.2013.09.014 ]
Blaschke T, Hay G J, Weng Q H and Resch B , 2011. Collective sensing: integrating geospatial technologies to understand urban systems—an overview. Remote Sensing, 3(8): 1743-1776[DOI: 10.3390/rs3081743http://dx.doi.org/10.3390/rs3081743 ]
Brust C A, Sickert S, Simon M, Rodner E and Denzler J . 2015. Convolutional patch networks with spatial prior for road detection and urban scene understanding. international conference on computer vision theory and applications, Available:https://arxiv.org/abs/1502.06344[DOI: 10.5220/0005355105100517http://dx.doi.org/10.5220/0005355105100517 ]
Cao C Q and Sun Y . 2014. Automatic road centerline extraction from imagery using road GPS data. Remote Sensing, 6(9): 9014-9033[DOI: 10.3390/rs6099014http://dx.doi.org/10.3390/rs6099014 ]
Cao F Z, Xu Y B, Zhu B S and Li R S . 2015. Semi-automatic road centerline extraction from high-resolution remote sensing by image utilizing dynamic programming. Journal of Geomatics Science and Technology, 32(6): 615-618, 625
曹帆之, 徐杨斌, 朱宝山, 李润生 . 2015. 利用动态规划半自动提取高分辨率遥感影像道路中心线. 测绘科学技术学报, 32(6): 615-618, 625 [DOI: 10.3969/j.issn.1673-6338.2015.06.014http://dx.doi.org/10.3969/j.issn.1673-6338.2015.06.014 ]
Cao F Z, Zhu S L, Zhu B S, Li R S and Meng W C . 2016. Tracking road centerlines from remotely sensed imagery using mean shift and Kalman filtering. Acta Geodaetica et Cartographica Sinica, 45(2): 205-212, 223
曹帆之, 朱述龙, 朱宝山, 李润生, 孟伟灿 . 2016. 均值漂移与卡尔曼滤波相结合的遥感影像道路中心线追踪算法. 测绘学报, 45(2): 205-212, 223 [DOI: 10.11947/j.AGCS.2016.20140610http://dx.doi.org/10.11947/j.AGCS.2016.20140610 ]
Cardim G P, da Silva E A, Dias M A, Bravo I and Gardel A . 2018. Statistical evaluation and analysis of road extraction methodologies using a unique dataset from remote sensing. Remote Sensing, 10(4): 620[DOI: 10.3390/rs10040620http://dx.doi.org/10.3390/rs10040620 ]
Chen H, Yin L L and Ma L . 2014. Research on road information extraction from high resolution imagery based on global precedence//Proceedings of the 2014 3rd International Workshop on Earth Observation and Remote Sensing Applications. Changsha, China: IEEE: 151-155[DOI: 10.1109/EORSA.2014.6927868http://dx.doi.org/10.1109/EORSA.2014.6927868 ]
Chen Z X, Ren J Q, Tang H J, Shi Y, Leng P, Liu J, Wang L M, Wu W B, Yao Y M and Hasiyuya . 2016. Progress and perspectives on agricultural remote sensing research and applications in China. Journal of Remote Sensing, 20(5): 748-767
陈仲新, 任建强, 唐华俊, 史云, 冷佩, 刘佳, 王利民, 吴文斌, 姚艳敏, 哈斯图亚 . 2016. 农业遥感研究应用进展与展望. 遥感学报, 20(5): 748-767 [DOI: 10.11834/jrs.20166214http://dx.doi.org/10.11834/jrs.20166214 ]
Cheng G and Han J W . 2016. A survey on object detection in optical remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 117: 11-28 [DOI: 10.1016/j.isprsjprs.2016.03.014http://dx.doi.org/10.1016/j.isprsjprs.2016.03.014 ]
Cheng G L, Wang Y, Xu S B, Wang H Z, Xiang S M, and Pan C H . 2017. Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 55(6): 3322-3337 [DOI: 10.1109/TGRS.2017.2669341http://dx.doi.org/10.1109/TGRS.2017.2669341 ]
Cheng M J and Weng Q H . 2017. Urban road extraction from combined data sets of high-resolution satellite imagery and LiDAR data using GEOBIA//Quattrochi D A, ed. Integrating Scale in Remote Sensing and GIS. New York: CRC Press: 283-302
Cho N G, Yuille A and Lee S W . 2018. A novel linelet-based representation for line segment detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(5): 1195-1208 [DOI: 10.1109/TPAMI.2017.2703841http://dx.doi.org/10.1109/TPAMI.2017.2703841 ]
Cortes C and Vapnik V . 1995. Support-vector networks. Machine Learning, 20(3): 273-297 [DOI: 10.1007/BF00994018http://dx.doi.org/10.1007/BF00994018 ]
Coulibaly I, Spiric N, Lepage R and St-Jacques M . 2018. Semiautomatic road extraction from VHR images based on multiscale and spectral angle in case of earthquake. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(1): 238-248 [DOI: 10.1109/JSTARS.2017.2760282http://dx.doi.org/10.1109/JSTARS.2017.2760282 ]
Dai J G, Du Y, Fang X X, Wang Y and Miao Z P . 2018. Road extraction method for high resolution optical remote sensing images with multiple feature constraints. Journal of Remote Sensing, 22(5): 777-791
戴激光, 杜阳, 方鑫鑫, 王杨, 苗志鹏 . 2018. 多特征约束的高分辨率光学遥感影像道路提取. 遥感学报, 22(5): 777-791 [DOI: 10.11834/jrs.20188055http://dx.doi.org/10.11834/jrs.20188055 ]
Dai J G, Zhang L, Zhu E Z, Liao J C, Fang X X and Li J W . 2017. Principal line detection in remote sensing image. Journal of Remote Sensing, 21(2): 228-238
戴激光, 张力, 朱恩泽, 廖健驰, 方鑫鑫, 李晋威 . 2017. 遥感影像主特征线检测. 遥感学报, 21(2): 228-238 [DOI: 10.11834/jrs.20176234http://dx.doi.org/10.11834/jrs.20176234 ]
Ding L, Zhang B M, Guo H T and Lu J . 2017. Automatic road extraction from high-resolution remote sensing images assisted by vector data. Journal of Remote Sensing, 21(1): 84-95
丁磊, 张保明, 郭海涛, 卢俊 . 2017. 矢量数据辅助的高分辨率遥感影像道路自动提取. 遥感学报, 21(1): 84-95 [DOI: 10.11834/jrs.20175306http://dx.doi.org/10.11834/jrs.20175306 ]
Fischler M A and Elschlager R A . 1973. The representation and matching of pictorial structures. IEEE Transactions on Computers, C- 22(1): 67-92[DOI: 10.1109/T-C.1973.223602http://dx.doi.org/10.1109/T-C.1973.223602 ]
Frizzelle B G, Evenson K R, Rodriguez D A and Laraia B A . 2009. The importance of accurate road data for spatial applications in public health: customizing a road network. International Journal of Health Geographics, 8: 24[DOI: 10.1186/1476-072X-8-24http://dx.doi.org/10.1186/1476-072X-8-24 ]
Fu G . 2014. Road Extraction Method Using Multi-Source Remote Sensing Data. Beijing: Tsinghua University: 98-111
傅罡 . 2014. 多源遥感数据的道路提取方法研究. 北京: 清华大学: 98-111
Fu G, Zhao H R, Li C and Shi L M . 2013. Road detection from optical remote sensing imagery using circular projection matching and tracking strategy. Journal of the Indian Society of Remote Sensing, 41(4): 819-831[DOI: 10.1007/s12524-013-0295-yhttp://dx.doi.org/10.1007/s12524-013-0295-y ]
Gong J Y and Ji S P . 2018. Photogrammetry and deep learning. Acta Geodaetica et Cartographica Sinica, 47(6): 693-704
龚健雅, 季顺平 . 2018. 摄影测量与深度学习. 测绘学报, 47(6): 693-704 [DOI: 10.11947/j.AGCS.2018.20170640http://dx.doi.org/10.11947/j.AGCS.2018.20170640 ]
Grinias I, Panagiotakis C and Tziritas G . 2016. MRF-based segmentation and unsupervised classification for building and road detection in peri-urban areas of high-resolution satellite images. ISPRS Journal of Photogrammetry and Remote Sensing, 122: 145-166[DOI: 10.1016/j.isprsjprs.2016.10.010http://dx.doi.org/10.1016/j.isprsjprs.2016.10.010 ]
Gruen A and Li H H . 1997. Semi-automatic linear feature extraction by dynamic programming and LSB-Snakes. Photogrammetric Engineering and Remote Sensing, 63(8): 985-995
Han J, Guo Q and Li A . 2017. Road extraction based on unsupervised classification and geometric-texture-spectral features for high-resolution remote sensing images. Journal of Image and Graphics, 22(12): 1788-1797
韩洁, 郭擎, 李安 . 2017. 结合非监督分类和几何—纹理—光谱特征的高分影像道路提取. 中国图象图形学报, 22(12): 1788-1797 [DOI: 10.11834/jig.170222http://dx.doi.org/10.11834/jig.170222 ]
Haverkamp D S . 2002. Extracting straight road structure in urban environments using IKONOS satellite imagery. Optical Engineering, 41(9): 2107-2111 [DOI: 10.1117/1.1496785http://dx.doi.org/10.1117/1.1496785 ]
Heijmans H, Buckley M and Talbot H . 2005. Path openings and closings. Journal of Mathematical Imaging and Vision, 22( 2/3): 107-119[DOI: 10.1007/s10851-005-4885-3http://dx.doi.org/10.1007/s10851-005-4885-3 ]
Herumurti D, Uchimura K, Koutaki G and Uemura T . 2013. Urban road network extraction based on zebra crossing detection from a very high resolution RGB aerial image and DSM data//Proceedings of 2013 International Conference on Signal-Image Technology and Internet-Based Systems. Kyoto Japan: IEEE: 79-84[DOI: 10.1109/SITIS.2013.24http://dx.doi.org/10.1109/SITIS.2013.24 ]
Hu X Y, Tao C V and Hu Y . 2004. Automatic road extraction from dense urban area by integrated processing of high resolution imagery and LIDAR data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 35 (B 3): 288-292
Hu X Y, Zhang Z X and Zhang J Q . 2000. An approach of semiautomated road extraction from aerial images based on template matching and neural network. International Archives of Photogrammetry and Remote Sensing, 33 (B 3): 994-999
Hu X Y, Zhang Z X and Zhang J Q . 2002. Semiautomatic extraction of linear object form aerial image. Journal of Image and Graphics, 7(2): 137-140
胡翔云, 张祖勋, 张剑清 . 2002. 航空影像上线状地物的半自动提取. 中国图象图形学报, 7(2): 137-140 [DOI: 10.11834/jig.20020233http://dx.doi.org/10.11834/jig.20020233 ]
Hu Z W, Li Q Q, Zou Q, Zhang Q and Wu G F . 2016. A bilevel scale-sets model for hierarchical representation of large remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 54(12): 7366-7377 [DOI: 10.1109/TGRS.2016.2600636http://dx.doi.org/10.1109/TGRS.2016.2600636 ]
Huang X and Zhang L P . 2009. Road centreline extraction from High-resolution imagery based on multiscale structural features and support vector machines. International Journal of Remote Sensing, 30(8): 1977-1987 [DOI: 10.1080/01431160802546837http://dx.doi.org/10.1080/01431160802546837 ]
Huang X and Zhang L P . 2013. An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery. IEEE Transactions on Geoscience and Remote Sensing, 51(1): 257-272[DOI: 10.1109/TGRS.2012.2202912http://dx.doi.org/10.1109/TGRS.2012.2202912 ]
Huang X, Zhang L P and Li P X . 2007. Classification and extraction of spatial features in urban areas using high-resolution multispectral imagery. IEEE Geoscience and Remote Sensing Letters, 4(2): 260-264 [DOI: 10.1109/LGRS.2006.890540http://dx.doi.org/10.1109/LGRS.2006.890540 ]
Inglada J . 2007. Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of geometric image features. ISPRS Journal of Photogrammetry and Remote Sensing, 62(3): 236-248 [DOI: 10.1016/j.isprsjprs.2007.05.011http://dx.doi.org/10.1016/j.isprsjprs.2007.05.011 ]
Karaman E, Çinar U, Gedik E, Yardımcı Y and Halıcı U . 2012. A new algorithm for automatic road network extraction in multispectral satellite images//Proceedings of the 4th GEOBIA. Rio de Janeiro, Brazil: [s.n.]:455-459
Kass M, Witkin A and Terzopoulos D . 1988. Snakes: active contour models. International Journal of Computer Vision, 1(4): 321-331[DOI: 10.1007/BF00133570http://dx.doi.org/10.1007/BF00133570 ]
Kim T, Park S R, Kim M G, Jeong S and Kim K O . 2004. Tracking road centerlines from high resolution remote sensing images by least squares correlation matching. Photogrammetric Engineering and Remote Sensing, 70(12): 1417-1422 [DOI: 10.14358/PERS.70.12.1417http://dx.doi.org/10.14358/PERS.70.12.1417 ]
Krizhevsky A, Sutskever I and Hinton G E . 2012. ImageNet classification with deep convolutional neural networks//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada: Curran Associates Inc.: 1097-1105
Kumar M, Singh R K, Raju P L N and Krishnamurthy Y V N . 2014. Road network extraction from high resolution multispectral satellite imagery based on object oriented techniques. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, II- 8: 107-110 [DOI: 10.5194/isprsannals-II-8-107-2014http://dx.doi.org/10.5194/isprsannals-II-8-107-2014 ]
Lécun Y, Bottou L, Bengio Y and Haffner P . 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11): 2278-2324 [DOI: 10.1109/5.726791http://dx.doi.org/10.1109/5.726791 ]
Leninisha S and Vani K . 2015. Water flow based geometric active deformable model for road network. ISPRS Journal of Photogrammetry and Remote Sensing, 102: 140-147 [DOI: 10.1016/j.isprsjprs.2015.01.013http://dx.doi.org/10.1016/j.isprsjprs.2015.01.013 ]
Li C and Li F F . 2013. Auto-extracting sub-pixel line feature of digital images based on hypothesis testing. Acta Geodaetica et Cartographica Sinica, 42(1): 67-72
李畅, 李芳芳 . 2013. 基于假设检验的数字影像线状特征亚像素自动提取. 测绘学报, 42(1): 67-72
Li C F, Liu L, Zhou T G and Zhang L . 2009. Study on road extraction from high-resolution remote sensing image based on street trees. Remote Sensing Information, (1): 32-35
李成范, 刘岚, 周廷刚, 张力 . 2009. 基于行道树的高分辨率遥感影像道路提取研究. 遥感信息, (1): 32-35 [DOI: 10.3969/j.issn.1000-3177.2009.01.007]
Li C M, Kao C Y, Gore J C and Ding Z H . 2008. Minimization of region-scalable fitting energy for image segmentation. IEEE Transactions on Image Processing, 17(10): 1940-1949 [DOI: 10.1109/TIP.2008.2002304http://dx.doi.org/10.1109/TIP.2008.2002304 ]
Li G, An J L and Chen C H . 2011. Automatic road extraction from high-resolution remote sensing image based on bat model and mutual information matching. Journal of Computers, 6(11): 2417-2426[DOI: 10.4304/jcp.6.11.2417-2426http://dx.doi.org/10.4304/jcp.6.11.2417-2426 ]
Li H S, Huang P P and Su Y . 2015. A method for road extraction from remote sensing imagery. Remote Sensing for Land and Resources, 27(2): 56-62
李华胜, 黄平平, 苏莹 . 2015. 一种提取遥感影像中道路信息的方法. 国土资源遥感, 27(2): 56-62 [DOI: 10.6046/gtzyyg.2015.02.09http://dx.doi.org/10.6046/gtzyyg.2015.02.09 ]
Li J, Qin Q M, Xie C and Zhao Y . 2012. Integrated use of spatial and semantic relationships for extracting road networks from floating car data. International Journal of Applied Earth Observation and Geoinformation, 19: 238-247 [DOI: 10.1016/j.jag.2012.05.013http://dx.doi.org/10.1016/j.jag.2012.05.013 ]
Li M M, Stein A, Bijker W and Zhan Q M . 2016a. Region-based urban road extraction from VHR satellite images using binary partition tree. International Journal of Applied Earth Observation and Geoinformation, 44: 217-225[DOI: 10.1016/j.jag.2015.09.005http://dx.doi.org/10.1016/j.jag.2015.09.005 ]
Li P K, Zang Y, Wang C, Li J, Cheng M, Luo L and Yu Y . 2016b. Road network extraction via deep learning and line integral convolution//Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium. Beijing, China: IEEE: 1599-1602[DOI: 10.1109/IGARSS.2016.7729408http://dx.doi.org/10.1109/IGARSS.2016.7729408 ]
Li Q P, Fan H C, Luan X C, Yang B S and Liu L . 2014. Polygon-based approach for extracting multilane roads from OpenStreetMap urban road networks. International Journal of Geographical Information Science, 28(11): 2200-2219 [DOI: 10.1080/13658816.2014.915401http://dx.doi.org/10.1080/13658816.2014.915401 ]
Lian R B, Wang W X and Li J . 2018. Road extraction from high-resolution remote sensing images based on adaptive circular template and saliency map. Acta Geodaetica et Cartographica Sinica, 47(7): 950-958
连仁包, 王卫星, 李娟 . 2018. 自适应圆形模板及显著图的高分辨遥感图像道路提取. 测绘学报, 47(7): 950-958 [DOI: 10.11947/j.AGCS.2018.20170596http://dx.doi.org/10.11947/j.AGCS.2018.20170596 ]
Lin X G, Zhang J X, Li H T and Yang J H . 2009. Semi-automatic extraction of ribbon road from high resolution remotely sensed imagery by a T-shaped template matching. Geomatics and Information Science of Wuhan University, 34(3): 293-296
林祥国, 张继贤, 李海涛, 杨景辉 . 2009. 基于T型模板匹配半自动提取高分辨率遥感影像带状道路. 武汉大学学报(信息科学版), 34(3): 293-296 [DOI: 10.13203/j.whugis2009.03.027http://dx.doi.org/10.13203/j.whugis2009.03.027 ]
Liu B, Wu H Y, Wang Y D and Liu W M . 2015. Main road extraction from ZY-3 grayscale imagery based on directional mathematical morphology and VGI prior knowledge in urban areas. PLoS One, 10(9): e0138071[DOI: 10.1371/journal.pone.0138071http://dx.doi.org/10.1371/journal.pone.0138071 ]
Liu R Y, Song J F, Quan Y N, Xu P F, Xue Q, Yang Y and Miao Q G . 2017. Automatic road extraction method for high-resolution remote sensing images. Journal of Xidian University, 44(1): 100-105
刘如意, 宋建锋, 权义宁, 许鹏飞, 雪晴, 杨云, 苗启广 . 2017. 一种自动的高分辨率遥感影像道路提取方法. 西安电子科技大学学报(自然科学版), 44(1): 100-105 [DOI: 10.3969/j.issn.1001-2400.2017.01.018http://dx.doi.org/10.3969/j.issn.1001-2400.2017.01.018 ]
Liu W F, Zhang Z Q, Li S Y and Tao D P . 2017. Road detection by using a generalized Hough transform. Remote Sensing, 9(6): 590[DOI: 10.3390/rs9060590http://dx.doi.org/10.3390/rs9060590 ]
Lv Z, Jia Y H, Zhang Q and Chen Y F . 2017. An adaptive multifeature sparsity-based model for semiautomatic road extraction from high-resolution satellite images in urban areas. IEEE Geoscience and Remote Sensing Letters, 14(8): 1238-1242 [DOI: 10.1109/LGRS.2017.2704120http://dx.doi.org/10.1109/LGRS.2017.2704120 ]
Maboudi M, Amini J, Hahn M and Saati M . 2016. Road network extraction from VHR satellite images using context aware object feature integration and tensor voting. Remote Sensing, 8(8): 637[DOI: 10.3390/rs808063http://dx.doi.org/10.3390/rs808063 ]
Maboudi M, Amini J, Hahn M and Saati M . 2017. Object-based road extraction from satellite images using ant colony optimization. International Journal of Remote Sensing, 38(1): 179-198 [DOI: 10.1080/01431161.2016.1264026http://dx.doi.org/10.1080/01431161.2016.1264026 ]
Maboudi M, Amini J, Malihi S and Hahn M . 2018 Integrating fuzzy object based image analysis and ant colony optimization for road extraction from remotely sensed images. ISPRS Journal of Photogrammetry and Remote Sensing, 138: 151-163 [DOI: 10.1016/j.isprsjprs.2017.11.014http://dx.doi.org/10.1016/j.isprsjprs.2017.11.014 ]
Maggiori E, Manterola H L and del Fresno M . 2015. Perceptual grouping by tensor voting: a comparative survey of recent approaches. IET Computer Vision, 9(2): 259-277 [DOI: 10.1049/iet-cvi.2014.0103http://dx.doi.org/10.1049/iet-cvi.2014.0103 ]
Mayer H, Laptev I, Baumgartner A and Steger C . 1997. Automatic road extraction based on multi-Scale modeling, context, and snakes. International Archives of Photogrammetry and Remote Sensing, 32(3): 106-113.
McKeown D M and Denlinger J L . 1988. Cooperative methods for road tracking in aerial imagery//Proceedings CVPR '88: the Computer Society Conference on Computer Vision and Pattern Recognition. Ann Arbor, MI, USA: IEEE: 662-672 [DOI: 10.1109/CVPR.1988.196307http://dx.doi.org/10.1109/CVPR.1988.196307 ]
Mena J B . 2003. State of the art on automatic road extraction for GIS update: a novel classification. Pattern Recognition Letters, 24(16): 3037-3058 [DOI: 10.1016/S0167-8655(03)00164-8http://dx.doi.org/10.1016/S0167-8655(03)00164-8 ]
Miao Z L, Shi W Z, Gamba P and Li Z B . 2015. An object-based method for road network extraction in VHR satellite images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(10): 4853-4862 [DOI: 10.1109/JSTARS.2015.2443552http://dx.doi.org/10.1109/JSTARS.2015.2443552 ]
Miao Z L, Shi W Z and Zhang H . 2013. A road centerline extraction algorithm from high resolution satellite imagery. Journal of China University of Mining and Technology, 42(5): 887-892, 898
苗则朗, 史文中, 张华 . 2013. 一种高分辨率影像道路中心线提取算法. 中国矿业大学学报, 42(5): 887-892, 898 [DOI: 10.13247/j.cnki.jcumt.2013.05.028http://dx.doi.org/10.13247/j.cnki.jcumt.2013.05.028 ]
Miao Z L, Wang B, Shi W Z and Zhang H . 2014. A semi-automatic method for road centerline extraction from VHR images. IEEE Geoscience and Remote Sensing Letters, 11(11): 1856-1860 [DOI: 10.1109/LGRS.2014.2312000http://dx.doi.org/10.1109/LGRS.2014.2312000 ]
Mnih V and Hinton G E . 2010. Learning to detect roads in high-resolution aerial images//Proceedings of the 11th European Conference on Computer Vision. Heraklion, Crete, Greece: Springer: 210-223 [DOI: 10.1007/978-3-642-15567-3_16http://dx.doi.org/10.1007/978-3-642-15567-3_16 ]
Movaghati S, Moghaddamjoo A and Tavakoli A . 2010. Road extraction from satellite images using particle filtering and extended Kalman filtering. IEEE Transactions on Geoscience and Remote Sensing, 48(7): 2807-2817 [DOI: 10.1109/TGRS.2010.2041783http://dx.doi.org/10.1109/TGRS.2010.2041783 ]
Nakaguro Y, Makhanov S S and Dailey M N . 2011. Numerical experiments with cooperating multiple quadratic snakes for road extraction. International Journal of Geographical Information Science, 25(5): 765-783 [DOI: 10.1080/13658816.2010.498377http://dx.doi.org/10.1080/13658816.2010.498377 ]
Nikfar M, Zoej M J V, Mokhtarzade M and Shoorehdeli M A . 2015. Designing a new framework using type-2 FLS and cooperative-competitive genetic algorithms for road detection from ikonos satellite imagery. Remote Sensing, 7(7): 8271-8299 [DOI: 10.3390/rs70708271http://dx.doi.org/10.3390/rs70708271 ]
Osher S and Sethian J A . 1988. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79(1): 12-49[DOI: 10.1016/0021-9991(88)90002-2http://dx.doi.org/10.1016/0021-9991(88)90002-2 ]
Poullis C . 2014. Tensor-Cuts: a simultaneous multi-type feature extractor and classifier and its application to road extraction from satellite images. ISPRS Journal of Photogrammetry and Remote Sensing, 95: 93-108 [DOI: 10.1016/j.isprsjprs.2014.06.006http://dx.doi.org/10.1016/j.isprsjprs.2014.06.006 ]
Pudaruth S . 2016. Extraction of roads from remotely sensed images using a multi-angled template matching technique//Proceedings of the 3rd International Symposium on Computer Vision and the Internet. Jaipur, India: ACM: 21-29 [DOI: 10.1145/2983402.2983412http://dx.doi.org/10.1145/2983402.2983412 ]
Rahimi S, Arefi H and Bahmanyar R . 2015. Automatic road extraction based on integration of high resolution LiDAR and aerial imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W 5: 583-587[DOI: 10.5194/isprsarchives-XL-1-W5-583-2015http://dx.doi.org/10.5194/isprsarchives-XL-1-W5-583-2015 ]
Raziq A, Xu A G and Li Y . 2016. Automatic extraction of urban road centerlines from high-resolution satellite imagery using automatic thresholding and morphological operation method. Journal of Geographic Information System, 8(4): 517-525[DOI: 10.4236/jgis.2016.84043http://dx.doi.org/10.4236/jgis.2016.84043 ]
Rochery M, Jermyn I H and Zerubia J . 2006. Higher order active contours. International Journal of Computer Vision, 69(1): 27-42[DOI: 10.1007/s11263-006-6851-yhttp://dx.doi.org/10.1007/s11263-006-6851-y ]
Saba F, Valadan Zoej M J and Mokhtarzade M . 2016. Optimization of multiresolution segmentation for object-oriented road detection from high-resolution images. Canadian Journal of Remote Sensing, 42(2): 75-84 [DOI: 10.1080/07038992.2016.1160770http://dx.doi.org/10.1080/07038992.2016.1160770 ]
Schubert H, van de Gronde J J, Roerdink J B T M . 2016. Efficient computation of greyscale path openings. Mathematical Morphology - Theory and Applications, 1(1): 189-202 [DOI: 10.1515/mathm-2016-0010http://dx.doi.org/10.1515/mathm-2016-0010 ]
Sengupta S K, Lopez A S, Brase J M and Paglieroni D W . 2004. Phase-based road detection in multi-source images//Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium. Anchorage, AK, USA: IEEE: 3833-3836 [DOI: 10.1109/IGARSS.2004.1369959http://dx.doi.org/10.1109/IGARSS.2004.1369959 ]
Sethian J A . 1996. A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences of the United States of America, 93(4): 1591-1595[DOI: 10.1073/pnas.93.4.1591http://dx.doi.org/10.1073/pnas.93.4.1591 ]
Sghaier M O and Lepage R . 2016. Road extraction from very high resolution remote sensing optical images based on texture analysis and beamlet transform. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(5): 1946-1958 [DOI: 10.1109/JSTARS.2015.2449296http://dx.doi.org/10.1109/JSTARS.2015.2449296 ]
Shackelford A K and Davis C H . 2003. Fully automated road network extraction from high-resolution satellite multispectral imagery//Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium. Toulouse, France: IEEE: 461-463 [DOI: 10.1109/IGARSS.2003.1293809http://dx.doi.org/10.1109/IGARSS.2003.1293809 ]
Shan J, Qin K, Huang C Q, Hu X Y, Yu Y, Hu Q W, Lin Z Y, Chen J P and Jia T . 2014. Methods of crowd sourcing geographic data processing and analysis. Geomatics and Information Science of Wuhan University, 39(4): 390-396
单杰, 秦昆, 黄长青, 胡翔云, 余洋, 胡庆武, 林志勇, 陈江平, 贾涛 . 2014. 众源地理数据处理与分析方法探讨. 武汉大学学报(信息科学版), 39(4): 390-396 [DOI: 10.13203/j.whugis20130633http://dx.doi.org/10.13203/j.whugis20130633 ]
Shao Y Z, Guo B X, Hu X Y and Di L P . 2011. Application of a fast linear feature detector to road extraction from remotely sensed imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(3): 626-631 [DOI: 10.1109/JSTARS.2010.2094181http://dx.doi.org/10.1109/JSTARS.2010.2094181 ]
Shi W Z, Zhu C Q and Wang Y . 2001. Road feature extraction from remotely sensed image: review and prospects. Acta Geodaetica et Cartographica Sinica, 30(3): 257-262
史文中, 朱长青, 王昱 . 2001. 从遥感影像提取道路特征的方法综述与展望. 测绘学报, 30(3): 257-262 [DOI: 10.3321/j.issn:1001-1595.2001.03.014http://dx.doi.org/10.3321/j.issn:1001-1595.2001.03.014 ]
Simonyan K and Zisserman A . 2014. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10). https://arxiv.org/abs/1409.1556https://arxiv.org/abs/1409.1556
Song M J and Civco D . 2004. Road extraction using SVM and image segmentation. Photogrammetric Engineering and Remote Sensing, 70(12): 1365-1371 [DOI: 10.14358/PERS.70.12.1365http://dx.doi.org/10.14358/PERS.70.12.1365 ]
Sui H G, Hua L and Gong J Y . 2003. Automatic extraction of road networks from remotely sensed images based on GIS knowledge//Proceedings of SPIE 4898, Image Processing and Pattern Recognition in Remote Sensing. Hangzhou, China: SPIE: 226-238 [DOI: 10.1117/12.467277http://dx.doi.org/10.1117/12.467277 ]
Sun C Y, Zhou T G, Chen S B, Shen J W, Wang J F and Yang H . 2015. Research of a semi-automatic extraction method for linear features based on rectangular template matching. Journal of Southwest University (Natural Science), 37(7): 155-160
孙晨阳, 周廷刚, 陈圣波, 沈敬伟, 王骏飞, 杨桦 . 2015. 基于矩形模板匹配的线状地物半自动提取方法研究. 西南大学学报(自然科学版), 37(7): 155-160 [DOI: 10.13718/j.cnki.xdzk.2015.07.023http://dx.doi.org/10.13718/j.cnki.xdzk.2015.07.023 ]
Talbot H and Appleton B . 2007. Efficient complete and incomplete path openings and closings. Image and Vision Computing, 25(4): 416-425 [DOI: 10.1016/j.imavis.2006.07.021http://dx.doi.org/10.1016/j.imavis.2006.07.021 ]
Tang W and Zhao S H . 2011 Road extraction in quaternion space from high spatial resolution remotely sensed images basing on GVF Snake model. Journal of Remote Sensing, 15(5): 1040-1052
唐伟, 赵书河 . 2011. 基于GVF和Snake模型的高分辨率遥感图像四元数空间道路提取. 遥感学报, 15(5): 1040-1052 [DOI: 10.11834/jrs.20110239http://dx.doi.org/10.11834/jrs.20110239 ]
Toth C and Jóźków G . 2016. Remote sensing platforms and sensors: a survey. ISPRS Journal of Photogrammetry and Remote Sensing, 115: 22-36 [DOI: 10.1016/j.isprsjprs.2015.10.004http://dx.doi.org/10.1016/j.isprsjprs.2015.10.004 ]
Treash K and Amaratunga K . 2000. Automatic road detection in grayscale aerial images. Journal of Computing in Civil Engineering, 14(1): 60-69[DOI: 10.1061/(ASCE)0887-3801(2000)14:1(60)http://dx.doi.org/10.1061/(ASCE)0887-3801(2000)14:1(60)
Tunde A M and Adeniyi E E . 2012. Impact of road transport on agricultural development: a Nigerian example. Ethiopian Journal of Environmental Studies and Management, 5(3): 232-238[DOI: 10.4314/ejesm.v5i3.3http://dx.doi.org/10.4314/ejesm.v5i3.3 ]
Uemura T, Uchimura K and Koutaki G . 2011. Road extraction in urban areas using boundary code segmentation for DSM and aerial RGB images. Journal of the Institute of Image Electronics Engineers of Japan, 40(1): 74-85 [DOI: 10.11371/iieej.40.74http://dx.doi.org/10.11371/iieej.40.74 ]
Unsalan C and Sirmacek B . 2012. Road network detection using probabilistic and graph theoretical methods. IEEE Transactions on Geoscience and Remote Sensing, 50(11): 4441-4453 [DOI: 10.1109/TGRS.2012.2190078http://dx.doi.org/10.1109/TGRS.2012.2190078 ]
Vosselman G and de Knecht J . 1995. Road tracing by profile matching and Kaiman filtering//Gruen A, Kuebler O and Agouris P, eds. Automatic Extraction of Man-Made Objects from Aerial and Space Images. Basel: Birkhäuser Basel: 265-274 [DOI: 10.1007/978-3-0348-9242-1_25http://dx.doi.org/10.1007/978-3-0348-9242-1_25 ]
Wan J and Yilmaz A . 2018. Machine vision special issue: building match graph using deep convolution feature for structure from motion. Acta Geodaetica et Cartographica Sinica, 47(6): 882-891
万杰, Yilmaz A . 2018. 基于深度卷积特征的影像关系表创建方法. 测绘学报, 47(6): 882-891 [DOI: 10.11947/j.AGCS.2018.20180040http://dx.doi.org/10.11947/j.AGCS.2018.20180040 ]
Wang F P, Wang W X, Xue B Y, Cao T and Gao T . 2017. Road extraction from high-spatial-resolution remote sensing image by combining GVF Snake with salient features. Acta Geodaetica et Cartographica Sinica, 46(12): 1978-1985
王峰萍, 王卫星, 薛柏玉, 曹霆, 高婷 . 2017. GVF Snake与显著特征相结合的高分辨率遥感图像道路提取. 测绘学报, 46(12): 1978-1985 [DOI: 10.11947/j.AGCS.2017.20170393http://dx.doi.org/10.11947/j.AGCS.2017.20170393 ]
Wang W F, Zhu S H, Feng Y H and Ding W L . 2012. Parallel edges detection from remote sensing image using local orientation coding. Acta Optica Sinica, 32(3): 0315001
王文锋, 朱书华, 冯以浩, 丁伟利 . 2012. 基于局部方向编码的遥感影像平行边缘识别. 光学学报, 32(3): 0315001 [DOI: 10.3788/AOS201232.0315001http://dx.doi.org/10.3788/AOS201232.0315001 ]
Wang W X, Yang N, Zhang Y, Wang F P, Cao T and Eklund P . 2016. A review of road extraction from remote sensing images. Journal of Traffic and Transportation Engineering (English Edition), 3(3): 271-282 [DOI: 10.1016/j.jtte.2016.05.005http://dx.doi.org/10.1016/j.jtte.2016.05.005 ]
Wang Z H, Hu X Y and Shan J . 2015. A rasterization-based hierarchical approach for urban road centerline extraction from crowdsourcing GPS floating car data. Bulletin of Surveying and Mapping, (8): 22-24, 34
王振华, 胡翔云, 单杰 . 2015. 众源GPS浮动车数据中城市道路中心线分级提取的栅格化方法. 测绘通报, (8): 22-24, 34 [DOI: 10.13474/j.cnki.11-2246.2015.0236http://dx.doi.org/10.13474/j.cnki.11-2246.2015.0236 ]
Wegner J D, Montoya-Zegarra J A and Schindler K . 2015. Road networks as collections of minimum cost paths. ISPRS Journal of Photogrammetry and Remote Sensing, 108: 128-137 [DOI: 10.1016/j.isprsjprs.2015.07.002http://dx.doi.org/10.1016/j.isprsjprs.2015.07.002 ]
Wei Y N, Wang Z L and Xu M . 2017. Road structure refined CNN for road extraction in aerial image. IEEE Geoscience and Remote Sensing Letters, 14(5): 709-713 [DOI: 10.1109/LGRS.2017.2672734http://dx.doi.org/10.1109/LGRS.2017.2672734 ]
Wiedemann, C , 2003. External evaluation of road networks. International Archives Of Photogrammetry, Remote Sensing And Spatial Information Sciences 34 (Part 3/W 8), 93-98
Willrich F . 2002. Quality control and updating of road data by GIS-driven road extraction from imagery. Proceedings of Joint International Symposium on Geospatial Theory, Processing, and Applications. Ottawa: [s.n.]: 1-7
Wu L and Hu Y A . 2010. A survey of automatic road extraction from remote sensing images. Acta Automatica Sinica, 36(7): 912-922
吴亮, 胡云安 . 2010. 遥感图像自动道路提取方法综述. 自动化学报, 36(7): 912-922 [DOI: 10.3724/SP.J.1004.2010.00912http://dx.doi.org/10.3724/SP.J.1004.2010.00912 ]
Wu X W and Xu H Q . 2010. Level set method major roads information extract from high-resolution remote-sensing imagery. Journal of Astronautics, 31(5): 1495-1502
吴学文, 徐涵秋 . 2010. 一种基于水平集方法提取高分辨率遥感影像中主要道路信息的算法. 宇航学报, 31(5): 1495-1502 [DOI: 10.3873/j.issn.1000-1328.2010.05.038http://dx.doi.org/10.3873/j.issn.1000-1328.2010.05.038 ]
Xu C Y and Prince J L . 1997. Gradient vector flow: a new external force for snakes//Proceedings of 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Juan, Puerto Rico, USA: IEEE: 66-71 [DOI: 10.1109/CVPR.1997.609299http://dx.doi.org/10.1109/CVPR.1997.609299 ]
Xu Y Y, Xie Z, Feng Y X and Chen Z L . 2018. Road extraction from high-resolution remote sensing imagery using deep learning. Remote Sensing, 10(9): 1461 [DOI: 10.3390/rs10091461http://dx.doi.org/10.3390/rs10091461 ]
Yang C, Duraiswami R, DeMenthon D and Davis L . 2003. Mean-shift analysis using quasi-newton methods//Proceedings of 2003 International Conference on Image Processing. Barcelona, Spain: IEEE: II- 447 [DOI: 10.1109/ICIP.2003.1246713http://dx.doi.org/10.1109/ICIP.2003.1246713 ]
Yang Y and Zhu C Q . 2010. Extracting road centrelines from high-resolution satellite images using active window line segment matching and improved SSDA. International Journal of Remote Sensing, 31(9): 2457-2469 [DOI: 10.1080/01431160903019288http://dx.doi.org/10.1080/01431160903019288 ]
Yin D D, Du S H, Wang S W and Guo Z . 2015. A direction-guided ant colony optimization method for extraction of urban road information from very-high-resolution images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(10): 4785-4794 [DOI: 10.1109/JSTARS.2015.2477097http://dx.doi.org/10.1109/JSTARS.2015.2477097 ]
Yu J, Yu F, Zhang J and Liu Z Y . 2013. High resolution remote sensing image road extraction combining region growing and road-unit. Geomatics and Information Science of Wuhan University, 38(7): 761-764
余洁, 余峰, 张晶, 刘振宇 . 2013. 结合区域生长与道路基元的高分辨率遥感影像道路提取. 武汉大学学报(信息科学版), 38(7): 761-764 [DOI: 10.13203/j.whugis2013.07.014http://dx.doi.org/10.13203/j.whugis2013.07.014 ]
Zhang J Q, Liu P F, Wang H and Liu Y L . 2010. Semi-automatic road extraction with Meanshift algorithm. Geomatics and Information Science of Wuhan University, 35(6): 719-722
张剑清, 刘朋飞, 王华, 刘永亮 . 2010. 利用Meanshift进行道路提取. 武汉大学学报(信息科学版), 35(6): 719-722 [DOI: 10.13203/j.whugis2010.06.028http://dx.doi.org/10.13203/j.whugis2010.06.028 ]
Zhang J X, Lin X G, Liu Z J and Shen J . 2011. Semi-automatic road tracking by template matching and distance transformation in urban areas. International Journal of Remote Sensing, 32(23): 8331-8347 [DOI: 10.1080/01431161.2010.540587http://dx.doi.org/10.1080/01431161.2010.540587 ]
Zhang Q P and Couloigner I . 2006. Benefit of the angular texture signature for the separation of parking lots and roads on high resolution multi-spectral imagery. Pattern Recognition Letters, 27(9): 937-946 [DOI: 10.1016/j.patrec.2005.12.003http://dx.doi.org/10.1016/j.patrec.2005.12.003 ]
Zhang Z X, Liu Q J and Wang Y H . 2018. Road extraction by deep residual U-Net. IEEE Geoscience and Remote Sensing Letters, 15(5):749-753 [DOI: 10.1109/LGRS.2018.2802944http://dx.doi.org/10.1109/LGRS.2018.2802944 ]
Zhu E Z, Song W D and Dai J G . 2016. Road extraction of high-resolution remote sensing images based on improved SVM. Science of Surveying and Mapping, 41(12): 224-228
朱恩泽, 宋伟东, 戴激光 . 2016. 改进支持向量机的高分遥感影像道路提取. 测绘科学, 41(12): 224-228[DOI: 10.16251/j.cnki.1009-2307.2016.12.044http://dx.doi.org/10.16251/j.cnki.1009-2307.2016.12.044 ]
相关作者
相关机构