ASTER GDEM V2的南极冰川高程误差校正及精度分析
Vertical accuracy correction and analysis of ASTER GDEM V2 over Antarctic Glacier
- 2020年24卷第8期 页码:1010-1022
纸质出版日期: 2020-08-07
DOI: 10.11834/jrs.20208361
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-08-07 ,
扫 描 看 全 文
陈昊楠,许诗枫,黄艳,王淑杰,舒松,余柏蒗,吴健平.2020.ASTER GDEM V2的南极冰川高程误差校正及精度分析.遥感学报,24(8): 1010-1022
Chen H N,Xu S F,Huang Y,Wang S J,Shu S,Yu B L and Wu J P. 2020. Vertical accuracy correction and analysis of ASTER GDEM V2 over Antarctic Glacier. Journal of Remote Sensing(Chinese),24(8): 1010-1022[DOI:10.11834/jrs.20208361]
ASTER GDEM V2是研究南极冰盖表面的一种重要DEM数据源。由于南极冰雪区反射率高且缺乏地形特征,导致ASTER GDEM V2存在大量的坑、隆起等噪声,难以直接用于南极地形分析。本文以ICESat/GLAS激光点高程数据作为参考,采用修正等高线法对南极伯德(Byrd)冰川ASTER GDEM V2进行了误差校正,并将其与ICESat-1 DEM的垂直精度进行了对比分析。结果表明:ASTER GDEM V2的RMSE由校正前的26.56 m下降到校正后的18.77 m,远低于ICESat-1 DEM的RMSE(121.24 m);校正后的ASTER GDEM V2高程精度受坡度影响较小,不存在明显的系统误差,而ICESat-1 DEM的高程精度受坡度的影响较大。本研究进一步通过地形剖面分析得到:校正前的ASTER GDEM V2噪声主要分布于高程较低、地形平坦的区域,通过修正等高线的方法可以有效去除这些噪声,去除噪声后的ASTER GDEM V2可作为研究伯德冰川理想的DEM数据源。
ASTER GDEM V2 is one of the most widely used DEM data for Antarctic Ice Sheet analysis. However
it cannot be directly used due to its large anomalies in the snow-covered plateaus of the continent
where the surface reflectance is very high and no obvious surface features are available for the generation of high-quality DEM.
This study rectifies the large anomalies in ASTER GDEM V2 over Byrd Glacier using a contour correction method. Then the accuracy of the anomaly-corrected ASTER GDEM V2 is quantitatively evaluated against.
Results show that the RMSE of ASTER GDEM V2 decreases from 26.56 m to 18.77 m (-6.79 m)
which is lower than the RMSE of ICESat-1 DEM (121.24 m). In addition
the accuracy of the corrected ASTER GDEM V2 is barely influenced by slope and no significant systematic errors can be observed. In contrast
the accuracy of ICESat-1 DEM is very sensitive to slope. Through further topographic profile analysis
the noises on previously non-corrected ASTER GDEM V2 are found to be mainly distributed in the low flat areas. Those noises can be effectively removed by using the contour correction method.
This study indicates that the corrected ASTER GDEM V2 is well qualified for analyzing Byrd Glacier
Antarctica.
遥感数字高程模型ASTER GDEM V2ICESat/GLAS南极冰川
remote sensingDigital Elevation Model (DEM)ASTER GDEM V2ICESat/GLASAntarcticGlacier
Abrams M, Tsu H, Hulley G, Iwao K, Pieri D, Cudahy T and Kargel J . 2015. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) after fifteen years: review of global products. International Journal of Applied Earth Observation and Geoinformation, 38: 292-301 [DOI: 10.1016/j.jag.2015.01.013http://dx.doi.org/10.1016/j.jag.2015.01.013 ]
Abshire J B, Sun X L, Riris H, Sirota J M, McGarry J, Palm S, Yi D H and Liiva P . 2005. Geoscience Laser Altimeter System (GLAS) on the ICESat mission: on-orbit measurement performance. Geophysical Research Letters, 32(21): L21S02 [DOI: 10.1029/2005GL024028http://dx.doi.org/10.1029/2005GL024028 ]
ASTER GDEM Validation Team . 2009. ASTER Global DEM validation summary report[EB/OL].
METI/ERSDAC, NASA/LPDAAC, USGS/EROS . [2017-05-23].https://pdfs.semanticscholar.org/5606/ead88307ae1700c3db6744c6be5aedc4935c.pdf?_ga=2.215600914.406338272.1574992696-1485719916.1574992696https://pdfs.semanticscholar.org/5606/ead88307ae1700c3db6744c6be5aedc4935c.pdf?_ga=2.215600914.406338272.1574992696-1485719916.1574992696
ASTER GDEM Validation Team . 2011. ASTER global digital elevation model version 2 - summary of validation results[EB/OL].NASA Land Processes Distributed Active Archive Center and the Joint Japan-US ASTER Science Team. [2017-05-23].https://lpdaacaster.cr.usgs.gov/GDEM/Summary_GDEM2_validation_report_final.pdfhttps://lpdaacaster.cr.usgs.gov/GDEM/Summary_GDEM2_validation_report_final.pdf
Bamber J and Jonathan L . 1994. A digital elevation model of the Antarctic ice sheet derived from ERS-1 altimeter data and comparison with terrestrial measurements. Annals of Glaciology, 20: 48-54 [DOI: 10.1017/S0260305500016220http://dx.doi.org/10.1017/S0260305500016220 ]
Bamber J and Gomez-Dans J L . 2005. The accuracy of digital elevation models of the Antarctic continent. Earth and Planetary Science Letters, 237( 3/4): 516-523 [DOI: 10.1016/j.epsl.2005.06.008http://dx.doi.org/10.1016/j.epsl.2005.06.008 ]
Bamber J L and Bindschadler R A . 1997. An improved elevation dataset for climate and ice-sheet modelling: validation with satellite imagery. Annals of Glaciology, 25: 439-444 [DOI: 10.3189/S0260305500014427http://dx.doi.org/10.3189/S0260305500014427 ]
Bamber J L, Gomez-Dans J L and Griggs J A . 2009. A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: data and methods. The Cryosphere, 3(1): 101-111 [DOI: 10.5194/tc-3-101-2009http://dx.doi.org/10.5194/tc-3-101-2009 ]
Bindschadler R, Vornberger P, Fleming A, Fox A, Mullins J, Binnie D, Paulsen S J, Granneman B and Gorodetzky D . 2008. The Landsat image mosaic of Antarctica. Remote Sensing of Environment, 112(12): 4214-4226 [DOI: 10.1016/j.rse.2008.07.006http://dx.doi.org/10.1016/j.rse.2008.07.006 ]
Budd W F, Jenssen D and Smith I N . 1984. A three-dimensional time-dependent model of the West Antarctic ice sheet. Annals of Glaciology, 5: 29-36 [DOI: 10.3189/1984AoG5-1-29-36http://dx.doi.org/10.3189/1984AoG5-1-29-36 ]
Cook A J, Murray T, Luckman A, Vaughan D G and Barrand N E . 2012. A new 100-m digital elevation model of the Antarctic Peninsula derived from ASTER Global DEM: methods and accuracy assessment. Earth System Science Data, 4(1): 129-142 [DOI: 10.5194/essd-4-129-2012http://dx.doi.org/10.5194/essd-4-129-2012 ]
Drewry D J . 1983. Antarctica: Glaciological and Geophysical Folio. Cambridge: Scott Polar Research Institute, University of Cambridge
DiMarzio J, Brenner A, Schutz R, Shuman C A and Zwally H J . 2007. GLAS/ICESat 500 m laser altimetry digital elevation model of Antarctica[DB/OL]. Boulder, Colorado: National Snow and Ice Data Center. [2017-03-18]. https://daacdata.apps.nsidc.org/pub/DATASETS/DEM/nsidc0304_icesat_antarctic_dem/https://daacdata.apps.nsidc.org/pub/DATASETS/DEM/nsidc0304_icesat_antarctic_dem/
Du X P, Guo H D, Fan X T, Zhu J J, Yan Z Z and Zhan Q . 2013. Vertical accuracy assessment of SRTM and ASTER GDEM over typical regions of China using ICESat/GLAS. Earth Science - Journal of China University of Geosciences, 38(4): 887-897
杜小平, 郭华东, 范湘涛, 朱俊杰, 严珍珍, 詹勤 . 2013. 基于ICESat/GLAS数据的中国典型区域SRTM与ASTER GDEM高程精度评价. 地球科学—中国地质大学学报, 38(4): 887-897) [DOI: 10.3799/dqkx.2013.087http://dx.doi.org/10.3799/dqkx.2013.087 ]
E D C, Shen Q, Xu Y and Chen G . 2009. High-accuracy topographical information extraction based on fusion of ASTER stereo-data and ICESat/GLAS data in Antarctica. Science in China Series D: Earth Sciences, 52(5): 714-722
鄂栋臣, 沈强, 徐莹, Chen G . 2009. 基于ASTER立体数据和ICESat/GLAS测高数据融合高精度提取南极地区地形信息. 中国科学 D辑: 地球科学, 39(3): 351-359) [DOI: 10.1007/s11430-009-0055-6http://dx.doi.org/10.1007/s11430-009-0055-6 ]
E D C, Xu Y and Zhang X H . 2007. ICESat’s performance and its application in Dome A area in Antarctica. Geomatics and Information Science of Wuhan University, 32(12): 1139-1142
鄂栋臣, 徐莹, 张小红 . 2007. ICESat卫星及其在南极Dome A地区的应用. 武汉大学学报(信息科学版), 32(12): 1139-1142) [DOI: 10.13203/j.whugis2007.12.005http://dx.doi.org/10.13203/j.whugis2007.12.005 ]
Enßle F, Heinzel J and Koch B . 2012. Evaluating height differences between global digital surface models and ICESat Heights at footprint Geolocation//Proceedings of GIS Ostrava 2012 -Surface Models for Geosciences. At Ostrava, Czech Republic, [s.n.]
Huang K W, Li F, Zhang S K, Hao W F, Xiao F and Yuan L X . 2016. Validation and analysis of the antarctic digital elevation models based on airborne altimetry-a case study of Thwaites Glacier, West Antarctica. Acta Geodaetica et Cartographica Sinica, 45(5): 544-551
黄科伟, 李斐, 张胜凯, 郝卫峰, 肖峰, 袁乐先 . 2016. 南极冰盖DEM机载测高验证与分析—以西南极Thwaites冰川为例. 测绘学报, 45(5): 544-551) [DOI: 10.11947/j.AGCS.2016.20150290http://dx.doi.org/10.11947/j.AGCS.2016.20150290 ]
Jessica C, Paola C M, Paolo C, Chris B and Meric S . 2018. Independent DEM of Antarctica using GNSS-R data from TechDemoSat-1. Geophysical Research Letters, 45(12): 6117-6123 [DOI: 10.1029/2018GL077429http://dx.doi.org/10.1029/2018GL077429 ]
Li Y K and Liu G N . 2000. The cross-section variation of glacial valley and its reflection to the glaciation. Acta Geographica Sinica, 55(2): 235-242
李英奎, 刘耕年 . 2000. 冰川槽谷横剖面沿程变化及其对冰川动力的反映. 地理学报, 55(2): 235-242) [DOI: 10.3321/j.issn:0375-5444.2000.05.012http://dx.doi.org/10.3321/j.issn:0375-5444.2000.05.012 ]
Liu H X, Jezek K C and Li B . 1999. Development of an Antarctic digital elevation model by integrating cartographic and remotely sensed data: a geographic information system based approach. Journal of Geophysical Research: Solid Earth, 104 (B 10): 23199-23213 [DOI: 10.1029/1999JB900224http://dx.doi.org/10.1029/1999JB900224 ]
Lythe M B and Vaughan D G . 2001. BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. Journal of Geophysical Research: Solid Earth, 106 (B 6): 11335-11351 [DOI: 10.1029/2000JB900449http://dx.doi.org/10.1029/2000JB900449 ]
Marsiat I and Bamber J L . 1997. The climate of Antarctica in the UGAMP GCM: sensitivity to topography. Annals of Glaciology, 25: 79-84 [DOI: 10.3189/S0260305500013835http://dx.doi.org/10.3189/S0260305500013835 ]
Rees W G . 2012. Assessment of ASTER global digital elevation model data for Arctic research. Polar Record, 48(1): 31-39 [DOI: 10.1017/S0032247411000325http://dx.doi.org/10.1017/S0032247411000325 ]
Rignot E and Thomas R H . 2002. Mass balance of polar ice sheets. Science, 297(5586): 1502-1506 [DOI: 10.1126/science.1073888http://dx.doi.org/10.1126/science.1073888 ]
Satgé F, Bonnet M P, Timouk F, Calmant S, Pillco R, Molina J, Lavado-Casimiro W, Arsen A, Crétaux J F and Garnier J . 2015. Accuracy assessment of SRTM v4 and ASTER GDEM v2 over the Altiplano watershed using ICESat/GLAS data. International Journal of Remote Sensing, 36(2): 465-488 [DOI: 10.1080/01431161.2014.999166http://dx.doi.org/10.1080/01431161.2014.999166 ]
Scambos T A, Bohlander J A, Shuman C A and Skvarca P . 2004. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophysical Research Letters, 31(18): L18402 [DOI: 10.1029/2004GL020670http://dx.doi.org/10.1029/2004GL020670 ]
Schenk T, Csatho B, van der Veen C J, Brecher H, Ahn Y and Yoon T . 2005. Registering imagery to ICESat data for measuring elevation changes on Byrd Glacier, Antarctica. Geophysical Research Letters, 32(23): L23S05 [DOI: 10.1029/2005GL024328http://dx.doi.org/10.1029/2005GL024328 ]
Shuman C A, Zwally H J, Schutz B E, Brenner A C, DiMarzio J P, Suchdeo V P and Fricker H A . 2006. ICESat Antarctic elevation data: preliminary precision and accuracy assessment. Geophysical Research Letters, 33(7): L07501 [DOI: 10.1029/2005GL025227http://dx.doi.org/10.1029/2005GL025227 ]
Stearns L and Hamilton G . 2005. A new velocity map for Byrd Glacier, East Antarctica, from sequential ASTER satellite imagery. Annals of Glaciology, 41(1): 71-76 [DOI: 10.3189/1727564057818 13393http://dx.doi.org/10.3189/172756405781813393 ]
Stearns L A . 2007. Outlet Glacier Dynamics in East Greenland and East Antarctica. Maine: University of Maine
Stearns L A, Smith B E and Hamilton G S . 2008. Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods. Nature Geoscience, 1(12): 827-831 [DOI: 10.1038/ngeo356http://dx.doi.org/10.1038/ngeo356 ]
Stokes C R and Clark C D . 2003. Giant glacial grooves detected on Landsat ETM+ satellite imagery. International Journal of Remote Sensing, 24(5): 905-910 [DOI: 10.1080/01431160110115069http://dx.doi.org/10.1080/01431160110115069 ]
Tachikawa T, Hato M, Kaku M and Iwasaki A . 2011. Characteristics of ASTER GDEM version 2//Proceedings of Geoscience and Remote Sensing Symposium. Vancouver: IEEE: 3657-3660 [DOI: 10.1109/IGARSS.2011.6050017http://dx.doi.org/10.1109/IGARSS.2011.6050017 ]
Toutin T . 2008. ASTER DEMs for geomatic and geoscientific applications: a review. International Journal of Remote Sensing, 29(7): 1855-1875 [DOI: 10.1080/01431160701408477http://dx.doi.org/10.1080/01431160701408477 ]
Wan L, Zhou C X, E D C and Deng F H . 2015. DEM generation and precision analysis of Antarctic ice sheet based on InSAR and ICESat data. Journal of Glaciology and Geocryology, 37(5): 1160-1167
万雷, 周春霞, 鄂栋臣, 邓方慧 . 2015. 基于InSAR和ICESat的南极冰盖地区DEM提取和精度分析. 冰川冻土, 37(5): 1160-1167) [DOI: 10.7522/j.isnn.1000-0240.2015.0130http://dx.doi.org/10.7522/j.isnn.1000-0240.2015.0130 ]
Xiao F, Zhang S K, E D C, Li F, Hao W F and Yuan L X . 2014. Precision comparison and analysis of the four Antarctic digital elevation models. Journal of Glaciology and Geocryology, 36(3): 640-648
肖峰, 张胜凯, 鄂栋臣, 李斐, 郝卫峰, 袁乐先 . 2014. 四种南极数字高程模型的精度比较与分析. 冰川冻土, 36(3): 640-648) [DOI: 10.7522/j.issn.1000-0240.2014.0077http://dx.doi.org/10.7522/j.issn.1000-0240.2014.0077 ]
Zhan L, Tang G A and Yang X . 2010. Evaluation of SRTM DEMs’ elevation accuracy: a case study in Shaanxi Province. Geography and Geo-Information Science, 26(1): 34-36
詹蕾, 汤国安, 杨昕 . 2010. SRTM DEM高程精度评价. 地理与地理信息科学, 26(1): 34-36
Zhang H P, Yang N, Liu S F, Zhang Y Q . 2006. Recent progress in the DEM-based tectonogeomorphic study. Geological Bulletin of China, 25(6): 660-669
张会平, 杨农, 刘少峰, 张岳桥 . 2006. 数字高程模型(DEM)在构造地貌研究中的应用新进展. 地质通报, 25(6): 660-669) [DOI: 10.3969/j.issn.1671-2552.2006.06.002http://dx.doi.org/10.3969/j.issn.1671-2552.2006.06.002 ]
Zwally H, Schutz R, Bentley C, Bufton J, Herring T, Minster J B, Spinhirne J and Thomas R . 2009. GLAS/ICESat L2 Antarctic and Greenland Ice Sheet Altimetry Data, Version 34. Boulder, Colorado. NASA National Snow & Ice Data Center. [DOI: 10.5067/ICESAT/GLAS/DATA225http://dx.doi.org/10.5067/ICESAT/GLAS/DATA225 ]
Zwally H J, Bindschadler R A, Brenner A C, Martin T V and Thomas R H . 1983. Surface elevation contours of greenland and Antarctic Ice Sheets. Journal of Geophysical Research: Oceans, 88 (C 3): 1589-1596 [DOI: 10.1029/JC088iC03p01589http://dx.doi.org/10.1029/JC088iC03p01589 ]
Zwally H J, Bindschadler R A, Major J A and Brenner A C . 1987. Ice measurements by GEOSAT radar altimetry. Johns Hopkins APL Technical Digest, 8(2): 251-254
相关作者
相关机构