遥感视频卫星运动车辆目标快速检测
Moving vehicle detection for remote sensing satellite video
- 2020年24卷第9期 页码:1099-1107
纸质出版日期: 2020-09-07
DOI: 10.11834/jrs.20208364
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-09-07 ,
扫 描 看 全 文
康金忠,王桂周,何国金,王慧慧,尹然宇,江威,张兆明.2020.遥感视频卫星运动车辆目标快速检测.遥感学报,24(9): 1099-1107
KANG Jinzhong,WANG Guizhou,HE Guojin,WANG Huihui,YIN Ranyu,JIANG Wei,ZHANG Zhaoming. 2020. Moving vehicle detection for remote sensing satellite video. Journal of Remote Sensing(Chinese),24(9): 1099-1107[DOI:10.11834/jrs.20208364]
随着遥感卫星成像技术的快速发展,遥感视频卫星的出现为运动车辆目标信息获取提供了新手段。然而在遥感卫星视频中,运动车辆目标仅为几个或十几个像素并与背景的对比性较低,难以获取车辆的局部细节特征,使得传统监控视频的运动车辆检测方法直接应用到卫星视频图像会存在很多的问题。在分析遥感卫星视频运动车辆目标检测与传统监控视频运动车辆目标检测差异的基础上,本文提出了一种感兴趣区域自动约束的遥感卫星视频运动车辆快速检测方法:首先是快速自动获取运动车辆目标的感兴趣区域;其次在感兴趣区域约束下,基于改进的高斯背景差分方法实现感兴趣区域内运动车辆快速检测。应用Skybox-1卫星视频数据进行了运动车辆目标检测实验并进行了定性与定量分析。实验结果表明,本文方法可以有效自动减少动态背景变化导致的伪运动目标,具有较高的检测率、较高的检测质量、极低的虚警率以及较高的运行效率,可自动高效实现卫星视频图像中运动车辆目标的高精度检测。
With the rapid development of remote sensing satellite imaging technology
remote sensing satellite video provides a new way to acquire moving vehicle target information
and it has become a new data source of vehicle information for intelligent transportation systems. However
in satellite video images
the vehicle is only a few to a dozen pixels and has less contrast with the background. Obtaining the vehicle’s local detail features is difficult. Many problems will arise if the traditional vehicle detection method in monitoring videos is directly applied on satellite videos. Thus
a method that can efficiently exploit and utilize the latest satellite video datasets is urgently needed.
On the basis of an analysis of the difference between moving target detection of remote sensing satellite video and traditional monitoring video
a method of moving vehicle detection for remote sensing satellite video automatically constrained by the region of interest was proposed. First
part of the video data is predetected by using the interframe difference method. Then
all the detection results are superimposed together. Morphological processing was perform to obtain the Region Of Interest (ROI) of moving vehicles. Second
moving vehicles were detected based on the improved Gaussian background difference method under the constraint of ROI.
Skybox-1 satellite video data were used to qualitatively and quantitatively analyze the accuracy and efficiency of moving vehicle detection. Most of the vehicles were successfully detected and marked out
thereby indicating that the method can be used to detect vehicles in satellite video data. The detection accuracy of our method is more than 93% in all cases
thus indicating that our method has an extremely low false alarm rate. The detection rate is between 70% and 80%
which indicates that the method can accurately detect most of the vehicles in the satellite video data. In addition
the quality of the test is stable at more than 0.84. We can conclude that the method can ensure a high detection accuracy and an optimal detection rate; therefore
the quality of the method is excellent. In this paper
we take the automatic extraction of the moving area as a pretreatment step
which means
after users wait for a few seconds
the program will detect vehicles in the satellite video data set at a near-real-time rate. The method can efficiently exploit and utilize the latest satellite video datasets.
The experimental results showed that the proposed method can effectively reduce the number of pseudo-moving targets caused by dynamic background changes
with a high detection rate
high detection quality
very low false alarm rate
and high operating efficiency. Therefore
the detection of moving vehicle targets in a satellite video can be realized effectively.
遥感视频卫星Skybox-1运动车辆感兴趣区域约束帧间差分背景差分
remote sensing satellite videoSkybox-1moving vehiclesconstraint by region of interestframe differencebackground difference
Ahmadi S A and Mohammadzadeh A. 2017. A simple method for detecting and tracking vehicles and vessels from high resolution spaceborne videos//Proceedings of 2017 Joint Urban Remote Sensing Event. Dubai: IEEE: 1-4 [DOI: 10.1109/JURSE.2017.7924614http://dx.doi.org/10.1109/JURSE.2017.7924614]
Ao W, Fu Y W and Xu F. 2018. Detecting tiny moving vehicles in satellite videos. arXiv:1807.01864(https://arxiv.org/abs/1807.01864[2018-09-07])
1807.01864Benezeth Y, Jodoin P M, Emile B, Laurent H and Rosenberger C. 2008. Review and evaluation of commonly-implemented background subtraction algorithms[C]//Proceedings of 2008 19th International Conference on Pattern Recognition. Tampa, FL, USA: IEEE: 1-4 [DOI: 10.1109/ICPR.2008.4760998]Bouttefroy P L M, Bouzerdoum A, Phung S L and Beghdadi A. 2010. On the analysis of background subtraction techniques using Gaussian Mixture Models//Proceedings of 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. Dallas: IEEE: 4042-4045 [DOI: 10.1109/ICASSP.2010.5495760http://dx.doi.org/10.1109/ICASSP.2010.5495760]
He Y, Wang D H and Zhu M L. 2011. Background subtraction based on nonparametric Bayesian estimation//Proceedings of Third International Conference on Digital Image Processing. Chengdu: SPIE: 80090G [DOI: 10.1117/12.896509http://dx.doi.org/10.1117/12.896509]
Jain R and Nagel H H. 1979. On the analysis of accumulative difference pictures from image sequences of real world scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2): 206-214 [DOI: 10.1109/TPAMI.1979.4766907http://dx.doi.org/10.1109/TPAMI.1979.4766907]
KaewTrakulPong P and Bowden R. 2002. An improved adaptive background mixture model for real-time tracking with shadow detection//Remagnino P, Jones G A, Paragios N and Regazzoni C S, eds. Video-Based Surveillance Systems. Boston, MA: Springer: 135-144 [DOI: 10.1007/978-1-4615-0913-4_11http://dx.doi.org/10.1007/978-1-4615-0913-4_11]
Kopsiaftis G and Karantzalos K. 2015. Vehicle detection and traffic density monitoring from very high resolution satellite video data//Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium. Milan: IEEE: 1881-1884 [DOI: 10.1109/IGARSS.2015.7326160http://dx.doi.org/10.1109/IGARSS.2015.7326160]
Li D R. 2016. The “Internet Plus” space-based information services. Journal of Remote Sensing, 20(5): 708-715
李德仁. 2016. 论“互联网+”天基信息服务. 遥感学报, 20(5): 708-715 [DOI: 10.11834/jrs.20166222http://dx.doi.org/10.11834/jrs.20166222]
Liu T. 2014. Research on the development of foreign video satellites. Space International, (9): 50-56
刘韬. 2014. 国外视频卫星发展研究. 国际太空, (9): 50-56
McFarlane N J B and Schofield C P. 1995. Segmentation and tracking of piglets in images. Machine Vision and Applications, 8(3): 187-193 [DOI: 10.1007/bf01215814http://dx.doi.org/10.1007/bf01215814]
Mou L, Zhu X, Vakalopoulou M, Karantzalos K, Paragios N, Le Saux B, Moser G and Tuia D. 2017. Multitemporal very high resolution from space: outcome of the 2016 IEEE GRSS data fusion contest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(8): 3435-3447 [DOI: 10.1109/JSTARS.2017.2696823http://dx.doi.org/10.1109/JSTARS.2017.2696823]
Otsu N. 1979. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1): 62-66 [DOI: 10.1109/TSMC.1979.4310076http://dx.doi.org/10.1109/TSMC.1979.4310076]
Sigari M H, Mozayani N and Pourreza H R. 2008. Fuzzy running average and fuzzy background subtraction: concepts and application. IJCSNS International Journal of Computer Science and Network Security, 8(2): 138-143
Sobral A and Vacavant A. 2014. A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Computer Vision and Image Understanding, 122: 4-21 [DOI: 10.1016/j.cviu.2013.12.005http://dx.doi.org/10.1016/j.cviu.2013.12.005]
Xiao Y. 2015. Jilin-1 satellites launch successfully. Space International, (10): 17
晓宇. 2015. 吉林-1卫星组星成功发射. 国际太空, (10): 17
Yang D and Dai F. 2018. Improved ViBe algorithm for detection of moving objects. Journal of Image and Graphics, 23(12): 1813-1828
杨丹, 戴芳. 2018. 运动目标检测的ViBe算法改进. 中国图象图形学报, 23(12): 1813-1828 [DOI: 10.11834/jig.180304http://dx.doi.org/10.11834/jig.180304]
Yang T, Wang X W, Yao B W, Li J, Zhang Y N, He Z N and Duan W C. 2016. Small moving vehicle detection in a satellite video of an urban area. Sensors, 16(9): 1528 [DOI: 10.3390/s16091528http://dx.doi.org/10.3390/s16091528]
Zhang G. 2016. Satellite video processing and applications. Journal of Applied Sciences, 34(4): 361-370
张过. 2016. 卫星视频处理与应用进展. 应用科学学报, 34(4): 361-370 [DOI: 10.3969/j.issn.0255-8297.2016.04.001http://dx.doi.org/10.3969/j.issn.0255-8297.2016.04.001]
Zivkovic Z and Van Der Heijden F. 2004. Recursive unsupervised learning of finite mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5): 651-656 [DOI: 10.1109/TPAMI.2004.1273970http://dx.doi.org/10.1109/TPAMI.2004.1273970]
Zivkovic Z and Van Der Heijden F. 2006. Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters, 27(7): 773-780 [DOI: 10.1016/j.patrec.2005.11.005http://dx.doi.org/10.1016/j.patrec.2005.11.005]
相关文章
相关作者
相关机构