全波形机载激光雷达绝对辐射定标与不确定性分析
Uncertainty analysis of the absolute radiometric calibration of full waveform airborne LiDAR
- 2020年24卷第11期 页码:1353-1362
纸质出版日期: 2020-11-07
DOI: 10.11834/jrs.20208376
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-11-07 ,
扫 描 看 全 文
卢昊,庞勇,李增元,王迪,陈博伟,马振宇.2020.全波形机载激光雷达绝对辐射定标与不确定性分析.遥感学报,24(11): 1353-1362
Lu H,Pang Y,Li Z Y,Wang D,Chen B W and Ma Z Y. 2020. Uncertainty analysis of the absolute radiometric calibration of full waveform airborne LiDAR. Journal of Remote Sensing(Chinese), 24(11):1353-1362
为揭示全波形激光雷达回波在森林等植被区域多回波信号的特征和对目标识别分类的影响,以激光雷达方程为模型基础,利用朗伯体目标为地面参考,提出了将激光雷达波形参数标定为后向散射截面、后向散射系数和漫反射率等物理量的方法,实现了机载小光斑全波形机载激光雷达数据绝对辐射定标。对两个不同实验区的LMS-Q680i数据标定结果表明,漫反射率与参考反射率相对误差总体分别小于10%和5.5%,误差标准差分别为0.044和0.077,有效消除了条带间差异。推导了多回波的激光雷达方程组,比较了相同系统在不同观测条件下的定标常数变化,重点分析了全波形激光雷达在穿透性目标上的多回波现象造成的能量衰减,及其对辐射定标结果的影响,证明了多回波现象是造成多回波信号减弱的主要原因。该现象是当前技术体制下激光雷达观测过程本身存在的缺陷,对基于激光雷达辐射信息的目标识别分类带来了一定的挑战,也是多光谱、高光谱激光雷达辐射信号定标必须解决的问题。
The multiple return phenomenon of laser pulse in the technology of full waveform laser scanning has an inevitable impact on the radiometric signal of LiDAR data as well as their radiometric calibration. Previous studies have been made that characterized this phenomenon as an attenuation of laser pulse energy partially intersected by objects
such as canopy and building edges
through the travel path. In this study
we proposed a novel theoretical explanation of multiple returns by establishing a set of LiDAR equations
one for each sub-pulse that composed the original outgoing pulse. The energy attenuation of LiDAR signals through penetrable targets
such as forest canopy
and its influence on radiometric calibration were particularly analyzed. Comparative experiments were conducted with data from one laser instrument of Riegl LMS-Q680i LiDAR system in two different data collection campaigns. One data collection site was covered by LiDAR flight lines of 600 m and 1200 m Above Ground Level (AGL)
and the other site with all 600 m AGL. During the data acquisition
ground earth surface with approximate Lambertian reflectivity behavior were measured with filed spectrometer
and the reflectance of ground reference objects were applied in the radiometric calibration process. The data were processed and radiometrically calibrated on the basis of classical LiDAR equation. In addition
multiple return point cloud of a scene with homogeneous ground surface with planted vegetation were extracted for further quantitative analysis. This process was implemented to reveal and characterize the influence of multiple returns on full waveform LiDAR echoes and subsequent target classification. Through the quantitative comparison of data strips
deviations of overlapping data of different flying altitude were calculated. It was demonstrated from the results that the systematic data deviations of LiDAR strip parameters are successfully eliminated. The overall relative errors of corrected diffuse reflectance of the two regions are less than 10% and 5.5%. The standard deviations of strip difference are 0.044 and 0.077 accordingly. Calibration constants in independent LiDAR surveying campaigns are compared. The constants were found to be with correlation to the LiDAR system and flying configurations. Moreover
it was found that LiDAR returns of different return number were not consistent
despite that they were reflected by the same object surface. Significant weakening was observed in the returns of higher orders. It was concluded that multiple return is the major cause of return intensity weakening on homogeneous surfaces and it has crucial effects on radiometric information based target recognition. This problem cannot be readily solved with the current LiDAR observation mechanism in typical mapping scenarios. Challenges from this phenomenon are inevitable to further target recognition and should be addressed for advanced multiple and hyperspectral LiDAR data in the future.
遥感机载激光雷达辐射定标雷达方程不确定性分析分类
remote sensingairborne LiDARradiometric calibrationradar equationuncertainty analysisclassification
Ahokas E, Hyyppä J, Yu X, Liang X, Matikainen L, Karila K, Litkey P, Kukko A, Jaakkola A, Kaartinen H, Holopainen M and Vastaranta M. 2016. Towards automatic single-sensor mapping by multispectral airborne laser scanning. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B3: 155-162 [DOI: 10.5194/isprs-archives-XLI-B3-155-2016http://dx.doi.org/10.5194/isprs-archives-XLI-B3-155-2016]
Ahokas E, Kaasalainen S, Hyyppä J and Suomalainen J. 2006. Calibration of the Optech ALTM 3100 laser scanner intensity data using brightness targets. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36: 1Á6
Alexander C, Tansey K, Kaduk J, Holland D and Tate N J. 2010. Backscatter coefficient as an attribute for the classification of full-waveform airborne laser scanning data in urban areas. ISPRS Journal of Photogrammetry and Remote Sensing, 65(5): 423-432 [DOI: 10.1016/j.isprsjprs.2010.05.002http://dx.doi.org/10.1016/j.isprsjprs.2010.05.002]
Höfle B and Pfeifer N. 2007. Correction of laser scanning intensity data: data and model-driven approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 62(6): 415-433 [DOI: 10.1016/j.isprsjprs.2007.05.008http://dx.doi.org/10.1016/j.isprsjprs.2007.05.008]
Hovi A, Korhonen L, Vauhkonen J and Korpela I. 2016. LiDAR waveform features for tree species classification and their sensitivity to tree- and acquisition related parameters. Remote Sensing of Environment, 173: 224-237 [DOI: 10.1016/j.rse.2015.08.019http://dx.doi.org/10.1016/j.rse.2015.08.019]
Lehner H and Briese C. 2010. Radiometric calibration of full-waveform airborne laser scanning data based on natural surfaces//Wagner W and Székely B, eds. ISPRS TC VII Symposium - 100 Years ISPRS. Vienna, Austria: ISPRS
Li Z Y, Pang Y and Liu Q W. 2015. LiDAR Forest Parameter Inversion: Technology and Methods. Beijing: Science Press
李增元, 庞勇, 刘清旺. 2015. 激光雷达森林参数反演技术与方法. 北京: 科学出版社
Lin Y C. 2015. Normalization of echo features derived from full-waveform airborne laser scanning data. Remote Sensing, 7(3): 2731-2751 [DOI: 10.3390/rs70302731http://dx.doi.org/10.3390/rs70302731]
Lu H, Pang Y and Li Z Y. 2015b. Storage and access of full waveform LiDAR data of LAS1.3 format based on inverted index. Computer Engineering and Applications, 51(16): 243-247
卢昊, 庞勇, 李增元. 2015b. 倒排索引优化的波形激光雷达数据存储和访问. 计算机工程与应用, 51(16): 243-247
Lu H, Pang Y, Li Z Y and Chen B W. 2015. An automatic range ambiguity solution in high-repetition-rate airborne laser scanner using priori terrain prediction. IEEE Geoscience and Remote Sensing Letters, 12(11): 2232-2236 [DOI: 10.1109/LGRS.2015.2461441http://dx.doi.org/10.1109/LGRS.2015.2461441]
Lu H, Pang Y, Xu G C and Li Z Y. 2015a. Quantitative analysis of differences between full waveform data and system point cloud data from airborne LiDAR. Geomatics and Information Science of Wuhan University, 40(5): 588-593
卢昊, 庞勇, 徐光彩, 李增元. 2015a. 机载激光雷达全波形数据与系统点云差异的定量分析. 武汉大学学报(信息科学版), 40(5): 588-593 [DOI: 10.13203/j.whugis20130443http://dx.doi.org/10.13203/j.whugis20130443]
Pang Y, Li Z Y, Ju H B, Lu H, Jia W, Si L, Guo Y, Liu Q W, Li S M, Liu L X, Xie B B, Tan B X and Dian Y Y. 2016. LiCHy: The CAF’s LiDAR, CCD and hyperspectral integrated airborne observation system. Remote Sensing, 8(5): 398 [DOI: 10.3390/rs805 0398http://dx.doi.org/10.3390/rs8050398]
Pfeifer N, Mandlburger G, Otepka J and Karel W. 2014. OPALS - A framework for Airborne Laser Scanning data analysis. Computers, Environment and Urban Systems, 45: 125-136 [DOI: 10.1016/j.compenvurbsys.2013.11.002http://dx.doi.org/10.1016/j.compenvurbsys.2013.11.002]
Qin Y C, Li B, Niu Z, Huang W J and Wang C Y. 2011. Stepwise decomposition and relative radiometric normalization for small footprint LiDAR waveform. Science China Earth Sciences, 54(4): 625-630
覃驭楚, 李斌, 牛铮, 黄文江, 王长耀. 2011. 小光斑激光雷达全波形数据递进分解与相对辐射校正. 中国科学: 地球科学, 41(1): 103-109 [DOI: 10.1007/s11430-010-4120-yhttp://dx.doi.org/10.1007/s11430-010-4120-y]
Tan K and Cheng X J. 2016. Correction of incidence angle and distance effects on TLS intensity data based on reference targets. Remote Sensing, 8(3): 251 [DOI: 10.3390/rs8030251http://dx.doi.org/10.3390/rs8030251]
Teo T A and Wu H M. 2015. Radiometric block adjustment for multi-strip airborne waveform lidar data. Remote Sensing, 7(12): 16831-16848 [DOI: 10.3390/rs71215856http://dx.doi.org/10.3390/rs71215856]
Wagner W, Ullrich A, Ducic V, Melzer T and Studnicka N. 2006. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing, 60(2): 100-112 [DOI: 10.1016/j.isprsjprs.2005.12.001http://dx.doi.org/10.1016/j.isprsjprs.2005.12.001]
Wagner W. 2010. Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts. ISPRS Journal of Photogrammetry and Remote Sensing, 65(6): 505-513 [DOI: 10.1016/j.isprsjprs.2010.06.007http://dx.doi.org/10.1016/j.isprsjprs.2010.06.007]
Wang D, Hollaus M, Puttonen E and Pfeifer N. 2016. Automatic and self-adaptive stem reconstruction in landslide-affected forests. Remote Sensing, 8(12): 974 [DOI: 10.3390/rs8120974http://dx.doi.org/10.3390/rs8120974]
Xu P T, Liu D, Zhou Y D, Liu Q, Bai J, Liu Z P, Wu L, Shen Y B and Liu C. 2020. Modeling and analysis of oceanic lidar returns with multiple scattering. Journal of Remote Sensing (Chinese), 24(2):142-148
徐沛拓, 刘东, 周雨迪, 刘群, 白剑, 刘志鹏, 吴兰, 沈亦兵, 刘崇. 2020. 海洋激光雷达多次散射回波信号建模与分析.遥感学报,24(2):142-148 [DOI:10.11834/jrs.20208266http://dx.doi.org/10.11834/jrs.20208266]
Xu G C, Pang Y, Li Z Y, Zhao D and Li D. 2013. Classifying land cover based on calibrated full-waveform airborne light detection and ranging data. Chinese Optics Letters, 11(8): 082801 [DOI: 10.3788/COL201311.082801http://dx.doi.org/10.3788/COL201311.082801]
Xu G C. 2013. Forest LAI and individual trees biomass estimation using small-footprint full-waveform LiDAR data. Beijing: Chinese Academy of Forestry
徐光彩. 2013. 小光斑波形激光雷达森林LAI和单木生物量估测研究. 北京: 中国林业科学研究院
Zhang J X, Lin X G and Liang X L. 2017. Advances and prospects of information extraction from point clouds. Acta Geodaetica et Cartographica Sinica, 46(10): 1460-1469
张继贤, 林祥国, 梁欣廉. 2017. 点云信息提取研究进展和展望. 测绘学报, 46(10): 1460-1469 [DOI: 10.11947/j.AGCS.2017.20170345http://dx.doi.org/10.11947/j.AGCS.2017.20170345]
相关作者
相关机构