陆地表层覆盖变化对地表反照率影响的四国对比
Impacts of land cover changes on surface albedo in China, the United States, India and Brazil
- 2020年24卷第7期 页码:917-932
纸质出版日期: 2020-07-07
DOI: 10.11834/jrs.20208406
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-07-07 ,
扫 描 看 全 文
郑瑜晗,黄麟,翟俊.2020.陆地表层覆盖变化对地表反照率影响的四国对比.遥感学报,24(7): 917-932
Zheng Y H,Huang L and Zhai J. 2020. Impacts of land cover changes on surface albedo in China, the United States, India and Brazil. Journal of Remote Sensing(Chinese),24(7): 917-932[DOI:10.11834/jrs.20208406]
陆表覆盖变化影响地表特征从而改变地表能量平衡是理解人类活动对全球气候变化影响的关键环节。选择国际气候谈判主要国家的美国、印度和巴西作为中国的对比国,对比分析不同国别、不同气候带典型陆表覆盖类型的地表反照率时空差异,进而模拟开垦和城市化等陆表覆盖变化对反照率的影响差异。结果表明:(1) 2000年—2015年,中国、美国的地表反照率年际变化存在明显的气候带空间分异特征,中国干旱半干旱区和美国中低纬湿润区表现出降低趋势,而中国亚热带湿润和美国高纬与中部干旱区则表现出明显的升高趋势,印度的地表反照率年际变化呈微弱下降趋势,而巴西为微弱上升趋势。(2)无雪覆盖时,耕地、林地、草地和人造地表反照率具有夏高、冬低的时间变化特征,干旱半干旱区反照率明显高于湿润区。4种类型的国别差异体现在,中国亚热带湿润区地表反照率均以上升为主,干旱半干旱区则相反;美国除耕地在干旱区呈较强的升高趋势外,其余类型基本为降低趋势;印度均表现为降低趋势;巴西则表现为略微升高趋势。(3)与无雪覆盖相比,有雪覆盖时不同陆表覆盖类型地表反照率均有所提高,林地提高幅度最小,约0.06—0.26,耕地提高最大,约为0.17—0.38,且中国林地反照率提高幅度略高于美国。(4)原陆表覆盖为林地时,开垦和城镇化均导致地表反照率升高,且干旱区升高幅度高于湿润区,湿润区的升高幅度随纬度降低而减弱;为草地时,开垦主要在巴西、印度和中、美亚热带湿润区引起地表反照率升高。而城镇化引起的反照率变化则受到原有地表覆盖、季节和气候背景影响存在较复杂的国别和气候带差异。
With the deepening research of global change
it is increasingly recognized that at the regional scale
changes in land use/land cover caused by human activities such as deforestation
urban expansion
and farmland reclamation affected the land surface characteristics and thus play a dominant factor in land surface radiative budget and energy balance
which is a key link in understanding the impact of human activities on global climate change.
Based on the 30 m Globe Land 30 dataset and 1000 m MODIS albedo products
this study quantitatively analyzed the spatial variations of surface albedo at interannual and seasonal scales
and compared its characteristics between farmland
forest
grassland and artificial surfaces in different climate zones among China
the United States
India
and Brazil. Then the changes in albedo due to reclamation and urbanization were further simulated.
Results show that (1) the interannual surface albedo from 2000 to 2015 showed a slight decline in India and a weak increase in Brazil
which had a obvious spatial heterogeneity in China and the United States. The arid and semi-arid zones in China and humid zones in middle and low latitudes of the United States showed decline trends
however the humid subtropical zones in China and the microthermal as well as the arid zones in the United States were opposite. (2) Under the snow-free condition
the interannual surface albedo of the farmland
forest
grassland and artificial surfaces have country differences. The surface albedo of the four types were high in summer and low in winter
and were obviously higher in arid and semi-arid zones than in humid zones. The albedo of humid subtropical zones in China has increased which is contrary to the arid and semiarid zones. Except for the farmland in arid zones in the United States that showed a relatively strong interannual trend
others generally declined. All types have decreased in India
however raised in Brazil. (3) Compared to the snow-free condition
when under the snow condition
the surface albedo of the four land cover types have raised. The albedo changes in forest are 0.06 to 0.26
which is the smallest
and 0.17 to 0.38 in cultivated land
which is the highest. And the albedo changes of forest in China is higher than that in the United States. (4) Reclamation and urbanization on forest will increase the albedo in all months
which will be more aggravated in arid zones than in humid zones. Reclamation on grassland will increase the albedo in India
Brazil
humid subtropical zones in China
and the United States. But the changes due to urbanization further demonstrate the variations between countries and zones that impacted by the original land cover types
seasons and background climate.
Therefore
even under the same climatic background
the variation of surface albedo has different directions and magnitudes in different countries. The spatial heterogeneity of albedo changes can reflect the differences in natural geographic background and can also reflect the differentiation in human disturbances such as different land use patterns and eco-environment policies which may helps the further analysis and understanding of the driving mechanism of the impacts on land surface characteristics caused by land use/land cover changes.
遥感陆表覆盖变化地表反照率国别对比气候带差异空间分异
remote sensingland cover changessurface albedointer-national comparisonclimate zone differentiationspatial variations
Betts A K, Desjardins R L and Worth D . 2007. Impact of agriculture, forest and cloud feedback on the surface energy budget in BOREAS. Agricultural and Forest Meteorology, 142( 2/4): 156-169 [DOI: 10.1016/j.agrformet.2006.08.020http://dx.doi.org/10.1016/j.agrformet.2006.08.020 ]
Betts R A . 2000. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature, 408(6809): 187-190 [DOI: 10.1038/35041545http://dx.doi.org/10.1038/35041545 ]
Bonan G B . 1997. Effects of land use on the climate of the United States. Climatic Change, 37(3): 449-486 [DOI: 10.1023/A:1005305708775http://dx.doi.org/10.1023/A:1005305708775 ]
Bounoua L, Defries R, Collatz G J, Sellers P and Khan H . 2002. Effects of land cover conversion on surface climate. Climatic Change, 52( 1/2): 29-64 [DOI: 10.1023/A:1013051420309http://dx.doi.org/10.1023/A:1013051420309 ]
Brovelli M A, Molinari M E, Hussein E, Chen J and Li R . 2015. The first comprehensive accuracy assessment of GlobeLand30 at a national level: methodology and results. Remote Sensing, 7(4): 4191-4212 [DOI: 10.3390/rs70404191http://dx.doi.org/10.3390/rs70404191 ]
Brovkin V, Ganopolski A, Claussen M and Petoukhov V . 1999. Modelling climate response to historical land cover change. Global Ecology and Biogeography, 8(6): 509-517.
Chen J, Chen J, Liao A P, Cao X, Chen L J, Chen X H, Peng S, Han G, Zhang H W, He C Y, Wu H and Lu M . 2014. Concepts and key techniques for 30 m global land cover mapping. Acta Geodaetica et Cartographica Sinica, 43(6): 551-557.
陈军, 陈晋, 廖安平, 曹鑫, 陈利军, 陈学泓, 彭舒, 韩刚, 张宏伟, 何超英, 武昊, 陆苗 . 2014. 全球30m地表覆盖遥感制图的总体技术. 测绘学报, 43(6): 551-557 [DOI: 10.13485/j.cnki.11-2089.2014.0089http://dx.doi.org/10.13485/j.cnki.11-2089.2014.0089 ]
Chen J, Chen J, Liao A P, Cao X, Chen L J, Chen X H, He C Y, Han G, Peng S, Lu M, Zhang W W, Tong X H and Mills J . 2015. Global land cover mapping at 30 m resolution: a POK-based operational approach. ISP Global land cover mapping at 30 m resolution: a POK-based operational approach RS Journal of Photogrammetry and Remote Sensing, 103: 7-27 [DOI: 10.1016/j.isprsjprs.2014.09.002http://dx.doi.org/10.1016/j.isprsjprs.2014.09.002 ]
Dickinson R E . 1995. Land processes in climate models. Remote Sensing of Environment, 51(1): 27-38 [DOI: 10.1016/0034-4257(94)00062-Rhttp://dx.doi.org/10.1016/0034-4257(94)00062-R ]
Du G M, Kuang W H, Meng F H, Chi W F and Lu D S . 2015. Spatiotemporal pattern and driving forces of land use/cover change in Brazil. Progress in Geography, 34(1): 73-82
杜国明, 匡文慧, 孟凡浩, 迟文峰, 陆灯盛 . 2015. 巴西土地利用/覆盖变化时空格局及驱动因素. 地理科学进展, 34(1): 73-82 [DOI: 10.11820/dlkxjz.2015.01.009http://dx.doi.org/10.11820/dlkxjz.2015.01.009 ]
Fahey D W, Doherty S J, Hibbard K A, Romanou A and Taylor P C . 2017. Physical drivers of climate change//Wuebbles D J, Fahey D W, Hibbard K A, Dokken D J, Stewart B C and Maycock T K, eds. Climate Science Special Report: Fourth National Climate Assessment Volume I. Washington, DC, USA: U.S. Global Change Research Program
Feddema J J, Oleson K W, Bonan G B, Mearns L O, Buja L E, Meehl G A and Washington W M . 2005. The importance of land-cover change in simulating future climates. Science, 310(5754): 1674-1678 [DOI: 10.1126/science.1118160http://dx.doi.org/10.1126/science.1118160 ]
Gash J H C and Nobre C A . 1997. Climatic effects of Amazonian deforestation: some results from ABRACOS. Bulletin of the American Meteorological Society, 78(5): 823-830 [DOI: 10.1175/1520-0477(1997)078<0823:CEOADS>2.0.CO;2http://dx.doi.org/10.1175/1520-0477(1997)078<0823:CEOADS>2.0.CO;2 ]
Grimm N B, Faeth S H, Golubiewski N E, Redman C L, Wu J G, Bai X M and Briggs J M . 2008. Global change and the ecology of cities. Science, 319(5864): 756-760 [DOI: 10.1126/science.1150195http://dx.doi.org/10.1126/science.1150195 ]
Hawkins E and Sutton R . 2009. The potential to narrow uncertainty in regional climate predictions. Bulletin of the American Meteorological Society, 90(8): 1095-1107 [DOI: 10.1175/2009BAMS2607.1http://dx.doi.org/10.1175/2009BAMS2607.1 ]
Hawkins E and Sutton R . 2011. The potential to narrow uncertainty in projections of regional precipitation change. Climate Dynamics, 37( 1/2): 407-418 [DOI: 10.1007/s00382-010-0810-6http://dx.doi.org/10.1007/s00382-010-0810-6 ]
He F N, Li M J and Xiao R . 2015. Comparisons of the land use and cover change in China and the United States over the past 300 years. Acta Geographica Sinica, 70(2): 297-307
何凡能, 李美娇, 肖冉 . 2015. 中美过去300年土地利用变化比较. 地理学报, 70(2): 297-307 [DOI: 10.11821/dlxb201502010http://dx.doi.org/10.11821/dlxb201502010 ]
He T, Liang S L and Song D X . 2014. Analysis of global land surface albedo climatology and spatial‐temporal variation during 1981-2010 from multiple satellite products. Journal of Geophysical Research, 119(17): 10281-1029 8 [DOI: 10.1002/2014JD021667http://dx.doi.org/10.1002/2014JD021667 ]
Hibbard K A, Hoffman F M, Huntzinger D and West T O . 2017. Changes in land cover and terrestrial biogeochemistry//Wuebbles D J, Fahey D W, Hibbard K A, Dokken D J, Stewart B C and Maycock T K, eds. Climate Science Special Report: Fourth National Climate Assessment Volume I. Washington, DC, USA: U.
S . Global Change Research Program
IPCC . 2013. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press
Kalnay E and Cai M . 2003. Impact of urbanization and land-use change on climate. Nature, 423(6939): 528-531 [DOI: 10.1038/nature01675http://dx.doi.org/10.1038/nature01675 ]
Karl T R, Melillo J M and Peterson T C . 2009. Climate Change Impacts in the United States: a State of Knowledge Report from the US Global Change Research Program. Cambridge: Cambridge University Press
Kuang W H, Liu J Y, Zhang Z X, Lu D S and Xiang B . 2013. Spatiotemporal dynamics of impervious surface areas across China during the early 21st century. Chinese Science Bulletin, 58(14): 1691-1701 [DOI: 10.1007/s11434-012-5568-2http://dx.doi.org/10.1007/s11434-012-5568-2 ]
Leroy M and Roujean J L . 1994. Sun and view angle corrections on reflectances derived from NOAA/AVHRR data. IEEE Transactions on Geoscience and Remote Sensing, 32(3): 684-697 [DOI: 10.1109/36.297985http://dx.doi.org/10.1109/36.297985 ]
Li J M, Yang Y, Fan J, Jin F J, Zhang W Z, Liu S H and Fu B J . 2017. Comparative research on regional differences in urbanization and spatial evolution of urban systems between China and India. Acta Geographica Sinica, 72(6): 986-1000
李佳洺, 杨宇, 樊杰, 金凤君, 张文忠, 刘盛和, 傅伯杰 . 2017. 中印城镇化区域差异及城镇体系空间演化比较. 地理学报, 72(6): 986-1000 [DOI: 10.11821/dlxb201706004http://dx.doi.org/10.11821/dlxb201706004 ]
Li Q P, Ma M G, Wu X D and Yang H . 2018. Snow cover and vegetation-induced decrease in global albedo from 2002 to 2016. Journal of Geophysical Research, 123(1): 124-138 [DOI: 10.1002/2017JD027010http://dx.doi.org/10.1002/2017JD027010 ]
Li Y, Zhao M S, Motesharrei S, Mu Q Z, Kalnay E and Li S C . 2015. Local cooling and warming effects of forests based on satellite observations. Nature Communications, 6(1): 6603 [DOI: 10.1038/ncomms7603http://dx.doi.org/10.1038/ncomms7603 ]
Liang S L . 2003. Recent algorithm developments in quantitative remote sensing of land surfaces//Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium. Toulouse, France: IEEE: 558-560 [DOI: 10.1109/IGARSS.2003.1293841http://dx.doi.org/10.1109/IGARSS.2003.1293841 ]
Liang S L, Wang K C, Zhang X T and Wild M . 2010. Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(3): 225-240 [DOI: 10.1109/JSTARS.2010.2048556http://dx.doi.org/10.1109/JSTARS.2010.2048556 ]
Liang S L, Zhao X, Liu S H, Yuan W P, Cheng X, Xiao Z Q, Zhang X T, Liu Q, Cheng J, Tang H R, Qu Y H, Bo Y C, Qu Y, Ren H Z, Yu K and Townshend J . 2013. A long-term Global Land Surface Satellite (GLASS) data-set for environmental studies. International Journal of Digital Earth, 6(S1): 5-33 [DOI: 10.1080/17538947.2013.805262http://dx.doi.org/10.1080/17538947.2013.805262 ]
Liu J Y, Kuang W H, Zhang Z X, Xu X L, Qin Y W, Ning J, Zhou W C, Zhang S W, Li R D, Yan C Z, Wu S X, Shi X Z, Jiang N, Yu D S, Pan X Z and Chi W F . 2014a. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. Journal of Geographical Sciences, 24(2): 195-210 [DOI: 10.1007/s11442-014-1082-6http://dx.doi.org/10.1007/s11442-014-1082-6 ]
Liu J Y, Shao Q Q, Yan X D, Fan J W, Deng X Z, Zhan J Y, Gao X J, Huang L, Xu X L, Hu Y F, Wang J B and Kuang W H . 2011. An overview of the progress and research framework on the effects of land use change upon global climate. Advances in Earth Sciences, 26(10): 1015-1022
刘纪远, 邵全琴, 延晓冬, 樊江文, 邓祥征, 战金艳, 高学杰, 黄麟, 徐新良, 胡云峰, 王军邦, 匡文慧 . 2011. 土地利用变化对全球气候影响的研究进展与方法初探. 地球科学进展, 26(10): 1015-1022 [DOI: 10.11867/j.issn.1001-8166.2011.10.1015http://dx.doi.org/10.11867/j.issn.1001-8166.2011.10.1015 ]
Liu J Y, Shao Q Q, Yan X D, Fan J W, Zhan J Y, Deng X Z, Kuang W H and Huang L . 2014b. Geobiophysical effects of land use change on climate change. Chinese Journal of Nature, 36(5): 356-363
刘纪远, 邵全琴, 延晓冬, 樊江文, 战金艳, 邓祥征, 匡文慧, 黄麟 . 2014. 土地利用变化影响气候变化的生物地球物理机制. 自然杂志, 36(5): 356-363
Liu Z J, Shao Q Q, Tao J and Chi W F . 2015. Intra-annual variability of satellite observed surface albedo associated with typical land cover types in China. Journal of Geographical Sciences, 25(1): 35-44 [DOI: 10.1007/s11442-015-1151-5http://dx.doi.org/10.1007/s11442-015-1151-5 ]
Loarie S R, Lobell D B, Asner G P, Mu Q Z and Field C B . 2011. Direct impacts on local climate of sugar-cane expansion in Brazil. Nature Climate Change, 1(2): 105-109 [DOI: 10.1038/NCLIMATE1067http://dx.doi.org/10.1038/NCLIMATE1067 ]
Ma W, Jia G S and Zhang A Z . 2017. Multiple satellite-based analysis reveals complex climate effects of temperate forests and related energy budget. Journal of Geophysical Research, 122(7): 3806-3820 [DOI: 10.1002/2016JD026278http://dx.doi.org/10.1002/2016JD026278 ]
Myhre G, Shindell D, Bréon F M, Collins W, Fuglestvedt J, Huang J,Koch D, Lamarque J F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T and Zhang H . 2013: Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change ([Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V and Midgley P M (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA)
Nowak D J and Greenfield E J . 2012. Tree and impervious cover in the United States. Landscape and Urban Planning, 107(1): 21-30 [DOI: 10.1016/j.landurbplan.2012.04.005http://dx.doi.org/10.1016/j.landurbplan.2012.04.005 ]
Offerle B, Jonsson P, Eliasson I and Grimmond C S B . 2005. Urban modification of the surface energy balance in the West African Sahel: Ouagadougou, Burkina Faso. Journal of Climate, 18(19): 3983-3995 [DOI: 10.1175/JCLI3520.1http://dx.doi.org/10.1175/JCLI3520.1 ]
Peel M C, Finlayson B L and McMahon T A . 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5): 1633-1644 [DOI: 10.5194/hess-11-1633-2007http://dx.doi.org/10.5194/hess-11-1633-2007 ]
Pielke R, Beven K, Brasseur G, Calvert J, Chahine M, Dickerson R R, Entekhabi D, Foufoula‐Georgiou E, Gupta H, Gupta V, Krajewski W, Krider E P, Lau W K M, McDonnell J, Rossow W, Schaake J, Smith J, Sorooshian S and Wood E . 2009. Climate change: the need to consider human Forcings Besides greenhouse gases. Eos, Transactions American Geophysical Union, 90(45): 413 [DOI: 10.1029/2009EO450008http://dx.doi.org/10.1029/2009EO450008 ]
Pielke R A, Pitman A, Niyogi D, Mahmood R, McAlpine C, Hossain F, Goldewijk K K, Nair U, Betts R, Fall S, Reichstein M, Kabat P and de Noblet N . 2011. Land use/land cover changes and climate: modeling analysis and observational evidence. Wiley Interdisciplinary Reviews: Climate Change, 2(6): 828-850 [DOI: 10.1002/wcc.144http://dx.doi.org/10.1002/wcc.144 ]
Rubel F and Kottek M . 2010. Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorologische Zeitschrift, 19(2): 135-141 [DOI: 10.1127/0941-2948/2010/0430http://dx.doi.org/10.1127/0941-2948/2010/0430 ]
Snyder P K, Delire C and Foley J A . 2004. Evaluating the influence of different vegetation biomes on the global climate. Climate Dynamics, 23( 3/4): 279-302 [DOI: 10.1007/s00382-004-0430-0http://dx.doi.org/10.1007/s00382-004-0430-0 ]
Stephens G L, O’brien D, Webster P J, Pilewski P, Kato S and Li J L . 2015. The albedo of Earth. Reviews of Geophysics, 53(1): 141-163 [DOI: 10.1002/2014RG000449http://dx.doi.org/10.1002/2014RG000449 ]
Sumner D M, Wu Q L and Pathak C S . 2011. Variability of albedo and utility of the MODIS albedo product in forested wetlands. Wetlands, 31(2): 229-237 [DOI: 10.1007/s13157-011-0161-zhttp://dx.doi.org/10.1007/s13157-011-0161-z ]
Sun Y, Zhang X B, Ren G Y, Zwiers F W and Hu T . 2016. Contribution of urbanization to warming in China. Nature Climate Change, 6(7): 706-709 [DOI: 10.1038/nclimate2956http://dx.doi.org/10.1038/nclimate2956 ]
Wang K C, Liu J M, Zhou X J, Sparrow M, Ma M, Sun Z A and Jiang W H . 2004. Validation of the MODIS global land surface albedo product using ground measurements in a semidesert region on the Tibetan Plateau. Journal of Geophysical Research, 109(D 5: D05107 [DOI: 10.1029/2003JD004229http://dx.doi.org/10.1029/2003JD004229 ]
Wang Z S, Schaaf C B, Sun Q S, Shuai Y M and Román M O . 2018. Capturing rapid land surface dynamics with Collection V006 MODIS BRDF/NBAR/Albedo (MCD43) products. Remote Sensing of Environment, 207: 50-64 [DOI: 10.1016/j.rse.2018.02.001http://dx.doi.org/10.1016/j.rse.2018.02.001 ]
Wu S H, Zhao Y, Tang Q H, Zheng J Y, Gao J B, Liang T and Ge Q S . 2015. Land surface pattern study under the framework of Future Earth. Progress in Geography, 34(1): 10-17
吴绍洪, 赵艳, 汤秋鸿, 郑景云, 高江波, 梁涛, 葛全胜 . 2015. 面向“未来地球”计划的陆地表层格局研究. 地理科学进展, 34(1): 10-17 [DOI: 10.11820/dlkxjz.2015.01.002http://dx.doi.org/10.11820/dlkxjz.2015.01.002 ]
Wuebbles D J, Fahey D W, Hibbard K A, Dokken D J, Stewart B C and Maycock T K . 2017. Climate Science Special Report: Fourth National Climate Assessment, Volume I. Washington, DC, USA: US. Global Change Research Program.
Xiao D P, Tao F L and Moiwo J P . 2011. Research progress on surface albedo under global change. Advances in Earth Sciences, 26(11): 1217-1224
肖登攀, 陶福禄, Moiwo J P . 2011. 全球变化下地表反照率研究进展. 地球科学进展, 26(11): 1217-1224 [DOI: 10.11867/j.issn.1001-8166.2011.11.1217http://dx.doi.org/10.11867/j.issn.1001-8166.2011.11.1217 ]
Zhai J, Liu R G, Liu J Y, Zhao G S and Huang L . 2014. Radiative forcing over China due to albedo change caused by land cover change during 1990-2010. Journal of Geographical Sciences, 24(5): 789-801 [DOI: 10.1007/s11442-014-1120-4http://dx.doi.org/10.1007/s11442-014-1120-4 ]
Zhang H, Jiao Z T, Dong Y D, Li J Y and Li X W . 2015. Albedo retrieved from BRDF archetype and surface directional reflectance. Journal of Remote Sensing, 19(3): 355-367
张虎, 焦子锑, 董亚冬, 李佳悦, 李小文 . 2015. 利用BRDF原型和单方向反射率数据估算地表反照率. 遥感学报, 19(3): 355-367 [DOI: 10.11834/jrs.20154131http://dx.doi.org/10.11834/jrs.20154131 ]
Zhang Q and Huang R H . 2004. Parameters of land-surface processes for Gobi in North-West China. Boundary-Layer Meteorology, 110(3): 471-478 [DOI: 10.1023/B:BOUN.0000007224.08804.b8http://dx.doi.org/10.1023/B:BOUN.0000007224.08804.b8 ]
Zhang X T, Liang S L, Wang K C, Li L and Gui S . 2010. Analysis of global land surface shortwave broadband albedo from multiple data sources. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(3): 296-305 [DOI: 10.1109/JSTARS.2010.2049342http://dx.doi.org/10.1109/JSTARS.2010.2049342 ]
Zhao L, Lee X, Smith R B and Oleson K . 2014. Strong contributions of local background climate to urban heat islands. Nature, 511(7508): 216-219 [DOI: 10.1038/nature13462http://dx.doi.org/10.1038/nature13462 ]
相关作者
相关机构