O2-O2云反演算法及其在TROPOMI上的应用
O2-O2 cloud retrieval algorithm and application to TROPOMI
- 2020年24卷第11期 页码:1363-1378
纸质出版日期: 2020-11-07
DOI: 10.11834/jrs.20208412
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-11-07 ,
扫 描 看 全 文
张文强,刘诚,郝楠,Gimeno Garcia Sebastian,邢成志,张成歆,苏文静,刘建国.2020.O2-O2云反演算法及其在TROPOMI上的应用.遥感学报,24(11): 1363-1378
Zhang W Q,Liu C,Hao N,Gimeno Garcia S,Xing C Z,Zhang C X,Su W J and Liu J G. 2020. O2-O2 cloud retrieval algorithm and application to TROPOMI. Journal of Remote Sensing(Chinese), 24(11):1363-1378
利用遥感技术对大气环境污染进行监测时,云是影响痕量气体反演精度的重要因素,因此在痕量气体反演中需要对云的影响进行校正,通常使用的云参数主要是有效云量和云压。本文基于O
2
-O
2
477 nm吸收波段构建了O
2
-O
2
云反演算法:首先,根据有效云量和云高与连续反射率和O
2
-O
2
斜柱浓度之间的对应关系,结合假定的云模型利用VLIDORT辐射传输模型建立关于有效云量和云压的查找表;然后,通过差分吸收光谱技术拟合卫星载荷观测的大气层顶辐射,获得O
2
-O
2
斜柱浓度并计算连续反射率;最后,结合辅助数据,根据查找表进行插值反演获得有效云量和云压。通过将算法应用到OMI观测数据,将反演结果与OMCLDO2产品进行对比验证,有效云量和云压空间分布一致,相关系数
R
均超过0.97;并还将该算法应用于下一代大气成分监测仪器TROPOMI,与FRESCO+产品对比,有效云量和云压空间分布基本一致,当地表类型为海洋时,有效云量相关系数
R
大于0.97,云压相关系数
R
大于0.94,云压反演结果存在一定的区别;通过将O
2
-O
2
云反演算法和FRESCO+云压反演结果与CALIOP Cloud Layer产品进行对比,结果表明,在低云情况下,O
2
-O
2
云反演算法线性回归方程斜率为0.782,截距为198.0 hPa,相关系数
R
为0.850,算法表现优于FRESCO+。而在高云情况下,FRESCO+反演结果更接近CALIOP云压结果。在OMI和TROPOMI上的应用表明O
2
-O
2
云反演算法在大气云反演中具有较高的准确性和可行性,可以为大气痕量气体反演的校正提供云参数,并为中国同类型卫星载荷的云反演算法提供算法参考。
The cloud covers more than 50% of the Earth
which plays a major role in radiation budget of Earth climate system and hydrological cycle through their strong impact on radiation process. Cloud is an important factor to affect the retrieval accuracy of trace gases during the measurement of air pollution based on remote sensing method. The effective cloud fraction and cloud pressure should be used in the process of correcting cloud effects. In this paper
O
2
-O
2
cloud retrieval algorithm based on O
2
-O
2
absorption band at 477 nm will be described.
The O
2
-O
2
cloud retrieval algorithm is developed based on the Look-Up Table (LUT) method. Effective cloud fraction and cloud pressure LUTs were generated using VLIDORT radiation transfer model based on the relationships of effective cloud fraction
cloud pressure
continuum reflectance and O
2
-O
2
slant column density. Then
the Differential Optical Absorption Spectroscopy (DOAS) is used to fit the radiance of top-of-atmosphere measured by the satellite payload
to obtain O
2
-O
2
slant column density and the continuum reflectance. Finally
combined with the auxiliary data
the effective cloud fraction and cloud pressure are retrieved by the interpolation based on the LUTs.
We have a validation between the O
2
-O
2
cloud retrieval algorithm results based on OMI data and OMCLDO2 products. The spatial distribution of the effective cloud fraction and cloud pressure show great consistency
and the correlation coefficients (R) between them are greater than 0.97. Then the O
2
-O
2
cloud retrieval algorithm was applied to the new generation of atmospheric sounding instrument TROPOMI. The cloud retrieval results also show high correlation compared with the FRESCO+ results
and R of effective cloud fraction and cloud pressure between above two results are greater than 0.97 and 0.95
respectively
when the surface type is ocean. The time series analysis of three months in Beijing from the two algorithms shows the good consistency of the retrieval results. Moreover
we compared with CALIOP Cloud Layer products using all the retrieved cloud pressure results of FRESCO+ and O
2
-O
2
cloud retrieval algorithm. O
2
-O
2
cloud retrieval algorithm performed better than FRESCO+ under low cloud condition. However
the FRESCO+ retrieval results are closer to CALIOP cloud pressure than O
2
-O
2
cloud retrieval algorithm under high cloud condition.
The O
2
-O
2
cloud retrieval algorithm was used during the cloud retrieval of OMI and TROPOMI
and it shows high accuracy and feasibility. This kind of algorithm can provide information of effective cloud fraction and cloud pressure in the process of atmospheric trace gases retrieval. The more important is that O
2
-O
2
cloud retrieval algorithm could provide reference for the development of cloud retrieval algorithm applied to the same type of satellite payload of China.
遥感O2-O2有效云量云压查找表臭氧监测仪TROPOMICALIPSO
remote sensingO2-O2effective cloud fractioncloud pressurelook-up tableOMITROPOMICALIPSO
Acarreta J R, De Haan J F and Stammes P. 2004. Cloud pressure retrieval using the O2-O2 absorption band at 477 nm. Journal of Geophysical Research, 109(D5): D05204 [DOI: 10.1029/2003 jd003915http://dx.doi.org/10.1029/2003jd003915]
Anderson G P, Clough S, Kneizys F X, Chetwynd J H and Shettle E P. 1986. AFGL Atmospheric Constituent Profiles (0—120 km). AFGL-TR-86-0110. Air Force Geophysics Laboratory
Brion J, Chakir A, Charbonnier J, Daumont D, Parisse C and Malicet J. 1998. Absorption spectra measurements for the ozone molecule in the 350-830 nm region. Journal of atmospheric chemistry, 30(2): 291-299 [DOI: 10.1023/A:1006036924364http://dx.doi.org/10.1023/A:1006036924364]
Chance K V and Spurr R J D. 1997. Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum. Applied Optics, 36(21): 5224-5230 [DOI: 10.1364/AO.36.005224http://dx.doi.org/10.1364/AO.36.005224]
Danielson J J and Gesch D B. 2011. Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010. Open-File Report 2011-1073. US Geological Survey
Deschamps P Y, Fouquart Y, Tanre D, Herman M, Lenoble J, Buriez J C, Dubuisson P, Parol F and Vanbauce C. 1994. Study on the Effects of Scattering on the Monitoring of Atmospheric Constituents. ESA Report 3838, ESA contract number 9740/91 /NL/BI. Eur Space Agency
Dirksen R, Dobber M, Voors R and Levelt P. 2006. Prelaunch characterization of the Ozone Monitoring Instrument transfer function in the spectral domain. Applied Optics, 45(17): 3972-3981 [DOI: 10.1364/AO.45.003972http://dx.doi.org/10.1364/AO.45.003972]
Joiner J, Vasilkov A P, Flittner D E, Gleason J F and Bhartia P K. 2004. Retrieval of cloud pressure and oceanic chlorophyll content using Raman scattering in GOME ultraviolet spectra. Journal of Geophysical Research, 109(D1): D01109 [DOI: 10.1029/2003jd003698http://dx.doi.org/10.1029/2003jd003698]
Kleipool Q, Ludewig A, Babić L, Bartstra R, Braak R, Dierssen W, Dewitte P J, Kenter P, Landzaat R, Leloux J, Loots E, Meijering P, van der Plas E, Rozemeijer N, Schepers D, Schiavini D, Smeets J, Vacanti G, Vonk F and Veefkind P. 2018. Pre-launch calibration results of the TROPOMI payload on-board the Sentinel 5 Precursor satellite. Atmospheric Measurement Techniques Discussions [DOI: 10.5194/amt-2018-25http://dx.doi.org/10.5194/amt-2018-25]
Koelemeijer R B A and Stammes P. 1999. Validation of Global Ozone Monitoring Experiment cloud fractions relevant for accurate ozone column retrieval. Journal of Geophysical Research, 104(D15): 18801-18814 [DOI: 10.1029/1999jd900279http://dx.doi.org/10.1029/1999jd900279]
Koelemeijer R B A, Stammes P, Hovenier J W and de Haan J F. 2001. A fast method for retrieval of cloud parameters using oxygen A band measurements from the Global Ozone Monitoring Experiment. Journal of Geophysical Research, 106(D4): 3475-3490 [DOI: 10.1029/2000jd900657http://dx.doi.org/10.1029/2000jd900657]
Kokhanovsky A A and Rozanov V V. 2008. The uncertainties of satellite DOAS total ozone retrieval for a cloudy sky. Atmospheric Research, 87(1): 27-36 [DOI: 10.1016/j.atmosres.2007.04.006http://dx.doi.org/10.1016/j.atmosres.2007.04.006]
Letu H, Ishimoto H, Riedi J, Nakajima T Y, Labonnote L C, Baran A J, Nagao T M and Sekiguchi M. 2016. Investigation of ice particle habits to be used for ice cloud remote sensing for the GCOM-C satellite mission. Atmospheric Chemistry and Physics, 16(18): 12287-12303 [DOI: 10.5194/acp-16-12287-2016http://dx.doi.org/10.5194/acp-16-12287-2016]
Letu H, Nagao T M, Nakajima T Y, Riedi J, Ishimoto H, Baran A J, Shang H Z, Sekiguchi M and Kikuchi M. 2019. Ice cloud properties from Himawari-8/AHI next-generation geostationary satellite: capability of the AHI to monitor the DC cloud generation process. IEEE Transactions on Geoscience and Remote Sensing, 57(6): 3229-3239 [DOI: 10.1109/TGRS.2018.2882803http://dx.doi.org/10.1109/TGRS.2018.2882803]
Li L, Shi R H, Chen Y Y, Xu Y M, Bai K X and Zhang J. 2013. Spatio-temporal characteristics of NO2 in China and the anthropogenic influences analysis based on OMI Data. Journal of Geo-Information Science, 15(5): 688-694
李龙, 施润和, 陈圆圆, 徐永明, 白开旭, 张颉. 2013. 基于OMI数据的中国NO2时空分布与人类影响分析. 地球信息科学学报, 15(5): 688-694 [DOI: 10.3724/SP.J.1047.2013.00688http://dx.doi.org/10.3724/SP.J.1047.2013.00688]
Liu X, Newchurch M J, Loughman R and Bhartia P K. 2004. Errors resulting from assuming opaque Lambertian clouds in TOMS ozone retrieval. Journal of Quantitative Spectroscopy and Radiative Transfer, 85(3/4): 337-365 [DOI: 10.1016/s0022-4073(03)00231-0http://dx.doi.org/10.1016/s0022-4073(03)00231-0]
Loyola D G, Gimeno García S, Lutz R, Argyrouli A, Romahn F, Spurr R J D, Pedergnana M, Doicu A, Molina García V and Schüssler O. 2018. The operational cloud retrieval algorithms from TROPOMI on board Sentinel-5 Precursor. Atmospheric Measurement Techniques, 11(1): 409-427 [DOI: 10.5194/amt-11-409-2018http://dx.doi.org/10.5194/amt-11-409-2018]
Platt U and Stutz J. 2008. Differential Optical Absorption Spectroscopy: Principles and Applications. Berlin: Springer [DOI: 10.1007/978-3-540-75776-4http://dx.doi.org/10.1007/978-3-540-75776-4]
Rozanov V V and Kokhanovsky A A. 2004. Semianalytical cloud retrieval algorithm as applied to the cloud top altitude and the cloud geometrical thickness determination from top-of-atmosphere reflectance measurements in the oxygen A band. Journal of Geophysical Research, 109(D5): D05202 [DOI: 10.1029/2003jd004104http://dx.doi.org/10.1029/2003jd004104]
Spurr R J D. 2006. VLIDORT: a linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media. Journal of Quantitative Spectroscopy and Radiative Transfer, 102(2): 316-342 [DOI: 10.1016/j.jqsrt.2006.05.005http://dx.doi.org/10.1016/j.jqsrt.2006.05.005]
Stammes P. 2002. OMI algorithm theoretical basis document, Volume Ⅲ, Clouds, Aerosols, and Surface UV Irradiance. ATBD-OMI-03, Ver. 2.0. OMI: 17-29
Stammes P, Sneep M, de Haan J F, Veefkind J P, Wang P and Levelt P F. 2008. Effective cloud fractions from the Ozone Monitoring Instrument: theoretical framework and validation. Journal of Geophysical Research, 113(D16): D16S38 [DOI: 10.1029/2007jd 008820http://dx.doi.org/10.1029/2007jd008820]
Stammes P, Sneep M and Wang P. 2017. Comparison Between FRESCO+ and O2-O2 Derived Cloud Properties from GOME-2. Version 0.2, EUMETSAT CONTRACT EUM/CO/16/4600001778/RL
Thalman R and Volkamer R. 2013. Temperature dependent absorption cross-sections of O2-O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure. Physical Chemistry Chemical Physics, 15(37): 15371-15381 [DOI: 10.1039/c3cp50 968khttp://dx.doi.org/10.1039/c3cp50968k]
Tilstra L G, Tuinder O N E, Wang P and Stammes P. 2017. Surface reflectivity climatologies from UV to NIR determined from Earth observations by GOME-2 and SCIAMACHY. Journal of Geophysical Research, 122(7): 4084-4111 [DOI: 10.1002/2016jd02 5940http://dx.doi.org/10.1002/2016jd025940]
van Diedenhoven B, Hasekamp O P and Landgraf J. 2007. Retrieval of cloud parameters from satellite-based reflectance measurements in the ultraviolet and the oxygen A-band. Journal of Geophysical Research, 112(D15): D15208 [DOI: 10.1029/2006JD008155http://dx.doi.org/10.1029/2006JD008155]
van Geffen J H G M, Boersma K F, Eskes H J, Maasakkers J D and Veefkind J P. 2018. TROPOMI ATBD of the Total and Tropospheric NO2 data Products. S5P-KNMI-L2-0005-RP. TROPOMI
Vandaele A C, Hermans C, Simon P C, Carleer M, Colin R, Fally S, Merienne M F, Jenouvrier A and Coquart B. 1998. Measurements of the NO2 absorption cross-section from 42 000 cm-1 to 10 000 cm-1 (238—1000 nm) at 220 K and 294 K. Journal of Quantitative Spectroscopy and Radiative Transfer, 59(3/5): 171-184 [DOI: 10.1016/S0022-4073(97)00168-4http://dx.doi.org/10.1016/S0022-4073(97)00168-4]
Vasilkov A, Joiner J, Spurr R, Bhartia P K, Levelt P and Stephens G. 2008. Evaluation of the OMI cloud pressures derived from rotational Raman scattering by comparisons with other satellite data and radiative transfer simulations. Journal of Geophysical Research, 113(D15): D15S19 [DOI: 10.1029/2007jd008689http://dx.doi.org/10.1029/2007jd008689]
Vaughan M A, Powell K A, Winker D M, Hostetler C A, Kuehn R E, Hunt W H, Getzewich B J, Young S A, Liu Z Y and McGill M J. 2009. Fully automated detection of cloud and aerosol layers in the CALIPSO Lidar measurements. Journal of Atmospheric and Oceanic Technology, 26(10): 2034-2050 [DOI: 10.1175/2009jtecha1228.1http://dx.doi.org/10.1175/2009jtecha1228.1]
Veefkind J P, de Haan J F, Sneep M and Levelt P F. 2016. Improvements to the OMI O2-O2 operational cloud algorithm and comparisons with ground-based radar-lidar observations. Atmospheric Measurement Techniques, 9(12): 6035-6049 [DOI: 10.5194/amt-9-6035-2016http://dx.doi.org/10.5194/amt-9-6035-2016]
Wagner T, Heland J, Zöger M and Platt U. 2003. A fast H2O total column density product from GOME-validation with in-situ aircraft measurements. Atmospheric Chemistry and Physics, 3(3): 651-663 [DOI: 10.5194/acp-3-651-2003http://dx.doi.org/10.5194/acp-3-651-2003]
Wagner T, Beirle S, Deutschmann T, Grzegorski M and Platt U. 2008. Dependence of cloud properties derived from spectrally resolved visible satellite observations on surface temperature. Atmospheric Chemistry and Physics, 8(9): 2299-2312 [DOI: 10.5194/acp-8-2299-2008http://dx.doi.org/10.5194/acp-8-2299-2008]
Wang P, Stammes P, van der A R, Pinardi G and van Roozendael M. 2008. FRESCO+: an improved O2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals. Atmospheric Chemistry and Physics, 8(21): 6565-6576 [DOI: 10.5194/acp-8-6565-2008http://dx.doi.org/10.5194/acp-8-6565-2008]
Wang P, Tuinder O and Stammes P. 2010.Cloud Retrieval Algorithm for GOME-2: FRESCO+, Version 1.3. Eumetsat Contract EUM/CO/09/4600000655/RM
Wang P and Stammes P. 2014. Evaluation of SCIAMACHY Oxygen A band cloud heights using Cloudnet measurements. Atmospheric Measurement Techniques, 7(5): 1331-1350 [DOI: 10.5194/amt-7-1331-2014http://dx.doi.org/10.5194/amt-7-1331-2014]
Winker D M, Vaughan M A, Omar A, Hu Y X, Powell K A, Liu Z Y, Hunt W H and Young S A. 2009. Overview of the CALIPSO mission and CALIOP data processing algorithms. Journal of Atmospheric and Oceanic Technology, 26(11): 2310-2323 [DOI: 10.1175/2009JTECHA1281.1http://dx.doi.org/10.1175/2009JTECHA1281.1]
Zhang H, Yu C, Su L, Li L J, Fan M, Wang Y P and Chen L F. 2017. Emission control effects observed from space during the military parade 2015 in Beijing. Journal of Remote Sensing, 21(4): 622-632
张晗, 余超, 苏林, 李令军, 范萌, 王雅鹏, 陈良富. 2017. MODIS和OMI数据评估阅兵期间北京市大气减排成效. 遥感学报, 21(4): 622-632 [DOI: 10.11834/jrs.20175337http://dx.doi.org/10.11834/jrs.20175337]
相关作者
相关机构