FY-3B/MWRI与GCOM-W1/AMSR-2亮温数据在北极地区的交叉定标
Intercalibration of FY-3B/MWRI and GCOM-W1/AMSR-2 brightness temperature over the Arctic
- 2020年24卷第8期 页码:1032-1044
纸质出版日期: 2020-08-07
DOI: 10.11834/jrs.20208436
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-08-07 ,
扫 描 看 全 文
唐晓彤,陈海花,管磊,李乐乐.2020.FY-3B/MWRI与GCOM-W1/AMSR-2亮温数据在北极地区的交叉定标.遥感学报,24(8): 1032-1044
Tang X T,Chen H H,Guan L and Li L L. 2020. Intercalibration of FY-3B/MWRI and GCOM-W1/AMSR-2 brightness temperature over the Arctic. Journal of Remote Sensing(Chinese),24(8): 1032-1044[DOI:10.11834/jrs.20208436]
为了使搭载在风云三号B星上的微波成像仪MWRI(Microwave Radiation Imager)与搭载在GCOM-W1(Global Change Observation Mission 1st-Water)卫星上的AMSR-2(Advanced Microwave Scanning Radiometer 2)的数据可以衔接使用,并为以后FY-3B/MWRI北极地区遥感参数反演研究提供基础,以GCOM-W1/AMSR-2数据为对比数据,北极海洋区域为研究区域,对两传感器对应的10个通道的升、降轨亮温数据进行交叉定标。首先,对MWRI和AMSR-2各通道逐月在研究区域进行偏差分析;其次,对MWRI和AMSR-2各通道逐月在海冰区域和开阔水域进行偏差分析;最后,对MWRI和AMSR-2各通道逐月在研究区域进行交叉定标,并对定标结果进行评价。研究结果表明:(1)MWRI各通道亮温数据小于AMSR-2,且相同频率下,垂直极化各通道逐月平均偏差的绝对值大于水平极化各通道,升、降轨数据在各通道的差异较小,逐月平均偏差的差值小于1 K;(2)在海冰区域,升、降轨各通道逐月平均偏差相差小于1 K,在开阔水域则介于0—1.5 K;(3)通过进行线性回归分析,MWRI和AMSR-2各通道相关系数大于0.99,具有强相关性,并得到升、降轨各通道各月份交叉定标的斜率和截距;(4)定标后MWRI的亮温值与AMSR-2的亮温值一致性较好,说明交叉定标的效果较好。
Microwave radiometers have been widely applied in polar region research because of their all-weather and all-time capabilities. Microwave Radiation Imager (MWRI) on FY-3B is the microwave radiometer of China’s own research and development and has aroused widespread concern. Long time series of earth observation data records play an important role in the research of earth environment changes and trends. The Arctic region is used as the study area and the data of Advanced Microwave Scanning Radiometer-2 (AMSR-2) on Global Change Observation Mission 1
st
-Water (GCOM-W1) are considered the standard data in providing the intercalibration result and the basis of retrieving remote sensing parameters in Arctic region in the future. Ascending and descending brightness temperatures at 10 channels in 2015 from FY-3B/MWRI are calibrated against those from GCOM-W1/AMSR-2.
Before brightness temperature data analysis and intercalibration
the data are processed in five steps. The first step is reading data
in which the DN value of remote sensing is transferred to brightness temperature value in the research region. The second step is data quality control. If the standard deviation of values in a grid and eight surrounding grids is more than 3 K
then the values in the nine grids should be eliminated. The value that is more than 300 K or less than 10 K should also be eliminated. In the third step
stereographic projection is used to project the brightness temperature value
time
longitude
and latitude into 896×608 grids. In the fourth step
data at the land-sea boundary and Marginal Ice Zone (MIZ) should be eliminated because of the mixed pixel. First
the grid data of 7×7 around the land data are marked as land
and the data marked as land are removed. Then
the ratio of V187 to V365 from AMSR-2 is used to calculate the MIZ. The ratio
which is equal to 0.92
is viewed as the threshold to divide the sea ice and the open water. Thereafter
the 3×3 grid is set as a template. If the template includes the grids that represent sea ice and open water
then the nine grids are eliminated. The fifth and last step is to set the time window as 30 min and the space window as 12.5 km ×12.5 km and convert 2D matched data to 1D data for intercalibration.
The intercalibration results of MWRI and AMSR-2 are as follows. First
the brightness temperature data of each channel of MWRI are smaller than those of AMSR-2
and the absolute values of monthly bias of vertical polarization channels are greater than those of horizontal polarization channels at the same frequency. The difference in monthly bias between ascending and descending orbits is small in each channel
which is less than 1 K. Second
the difference in the monthly bias in each channel between the ascending and descending orbits in the sea ice area is less than 1 K
while that in the open water is between 0 and 1.5 K. Third
linear regression analysis shows that most of the correlation coefficients of MWRI and AMSR-2 in each channel are above 0.99
which indicates a good correlation. The slope and intercept of the intercalibration of each channel in the ascending and descending orbits are obtained. Fourth
the brightness temperature of MWRI after calibration is consistent with that of AMSR-2. This consistency indicates that the intercalibration is effective.
遥感MWRIAMSR-2北极地区亮度温度交叉定标风云三号
remote sensingMWRIAMSR-2Arctic areabrightness temperatureintercalibrationFY-3
Chander G, Hewison T J, Fox N, Wu X Q, Xiong X X and Blackwell W J. 2013. Overview of intercalibration of satellite instruments. IEEE Transactions on Geoscience and Remote Sensing, 51(3):1056-1080 [DOI: 10.1109/tgrs.2012.2228654http://dx.doi.org/10.1109/tgrs.2012.2228654]
Chen J and Wu S L. 2014. Comparison analysis between MWRI and AMSR-E brightness temperature data over the polar region ice sheet. Remote Sensing Technology and Application, 29(5): 752-760
陈洁, 武胜利. 2014. MWRI与AMSR-E亮温数据在极地冰盖区的对比分析. 遥感技术与应用, 29(5): 752-760 [DOI: 10.11873/j.issn.1004-0323.2014.5.0752http://dx.doi.org/10.11873/j.issn.1004-0323.2014.5.0752]
Du J Y, Kimball J, Shi J C, Jones L, Wu S L, Sun R J and Yang H. 2014. Inter-calibration of satellite passive microwave land observations from AMSR-E and AMSR2 using overlapping FY3B-MWRI sensor measurements. Remote Sensing, 6(9): 8594-8616 [DOI: 10.3390/rs6098594http://dx.doi.org/10.3390/rs6098594]
Hu T X, Zhao T J, Shi J C and Gu J Z. 2016. Inter-calibration of AMSR-E and AMSR2 brightness temperature. Remote Sensing Technology and Application, 31(5): 919-924
胡同喜, 赵天杰, 施建成, 谷金枝. 2016. AMSR-E与AMSR2被动微波亮温数据交叉定标. 遥感技术与应用, 31(5): 919-924 [DOI: 10.11873/j.issn.1004-0323.2016.5.0919http://dx.doi.org/10.11873/j.issn.1004-0323.2016.5.0919]
Huang D, Qiu Y B, Shi L J, Wu S L, Liu X S and Ruan Y J. 2017. Cross-calibration for passive microwave measurement of MWRI and AMSR-E. Science of Surveying and Mapping, 42(1): 136-142
黄端, 邱玉宝, 石利娟, 武胜利, 刘小生, 阮永俭. 2017. 两种星载微波辐射计被动亮温数据的交叉定标. 测绘科学, 42(1): 136-142 [DOI: 10.16251/j.cnki.1009-2307.2017.01.025http://dx.doi.org/10.16251/j.cnki.1009-2307.2017.01.025]
Huang W, Hao Y L, Wang J and Cui T W. 2013. Brightness temperature data comparison and evaluation of FY-3B MicroWave radiation imager with AMSR-E. Periodical of Ocean University of China, 43(11): 99-111
黄薇, 郝艳玲, 王进, 崔廷伟. 2013. 渤、黄海FY-3B与AMSR-E亮温数据的比较. 中国海洋大学学报(自然科学版), 43(11): 99-111 [DOI: 10.16441/j.cnki.hdxb.2013.11.015http://dx.doi.org/10.16441/j.cnki.hdxb.2013.11.015]
Imaoka K, Kachi M, Kasahara M, Ito N, Nakagawa K and Oki T. 2010. Instrument performance and calibration Of AMSR-E and AMSR2//International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVIII, Part 8. Kyoto, Japan: [s.n.]
Imaoka K, Maeda T, Kachi M, Kasahara M, Ito N and Nakagawa K. 2012. Status of AMSR2 instrument on GCOM-W1//Proceedings Volume 8528, Earth Observing Missions and Sensors: Development, Implementation, and Characterization II. Kyoto, Japan: SPIE [DOI: 10.1117/12.977774http://dx.doi.org/10.1117/12.977774]
Ji Q, Pang X P, Zhang Z P, Zhao X, Liu Q Q and Gao X. 2017. The changes of Antarctic sea ice and its surface snow depth//The 34th China Meteorological Annual Conference S3 Proceedings of the Icecaps on Global Climate Change Responses and Feedback. Beijing: Chinese Meteorological Society.
季青, 庞小平, 张志鹏, 赵羲, 刘清全 高翔2017. 南极海冰及其表面积雪深度变化研究. 第34届中国气象学会年会S3冰冻圈对全球气候变化的响应与反馈论文集 北京: 中国气象学会)
Liu G F, Wu S L, Chen W Y, Pan L and He J K. 2014. Calibration system and achievement of microwave radiation imager of FY-3 satellite.(Journal of Microwaves, (S1): 576-579
刘高峰, 武胜利, 陈卫英, 潘莉, 何嘉恺. 2014. FY-3卫星微波成像仪定标系统及实现. 微波学报, (S1): 576-579) [DOI: 10.14183/j.cnki.1005-6122.2014.s1.164http://dx.doi.org/10.14183/j.cnki.1005-6122.2014.s1.164]
Miao J G and Liu D W. 2013. Introduction to Microwave Remote Sensing. Beijing: China Machine Press
苗俊刚, 刘大伟. 2013. 微波遥感导论. 北京: 机械工业出版社
Okuyama A and Imaoka K. 2014. Intercalibration of the Advanced Microwave Scanning Radiometer-2 (AMSR2) level-1B dataset//2014 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment. Pasadena, CA, USA: IEEE: 205-206 [DOI: 10.1109/MicroRad.2014.6878940http://dx.doi.org/10.1109/MicroRad.2014.6878940]
Okuyama A and Imaoka K. 2015. Intercalibration of advanced microwave scanning radiometer-2 (AMSR2) brightness temperature. IEEE Transactions on Geoscience and Remote Sensing, 53(8): 4568-4577 [DOI: 10.1109/TGRS.2015.2402204http://dx.doi.org/10.1109/TGRS.2015.2402204]
Svendsen E, Kloster K, Farrelly B, Johannessen O M, Johannessen J A, Campbell W J, Gloersen P, Cavalieri D and Mätzler C. 1983. Norwegian Remote Sensing Experiment: evaluation of the Nimbus 7 scanning multichannel microwave radiometer for sea ice research. Journal of Geophysical Research, 88(C5): 2781-2791 [DOI: 10.1029/JC088iC05p02781http://dx.doi.org/10.1029/JC088iC05p02781]
Wang G X, Jiang L M, Wu S L, Liu X J and Hao S R. 2017. Intercalibrating FY-3B and FY-3C/MWRI for synergistic implementing to snow depth retrieval algorithm. Remote Sensing Technology and Application, 32(1): 49-56
王功雪, 蒋玲梅, 武胜利, 刘晓敬, 郝诗睿. 2017. FY-3B与FY-3C/MWRI交叉定标及雪深算法应用. 遥感技术与应用, 32(1): 49-56) [DOI: 10.11873/j.issn.1004-0323.2017.1.0049http://dx.doi.org/10.11873/j.issn.1004-0323.2017.1.0049]
Yang H, Li X Q, You R and Wu S L. 2013. Environmental data records from FengYun-3B microwave radiation imager. Advances in Meteorological Science and Technology, (4): 136-143
杨虎, 李小青, 游然, 武胜利. 2013. 风云三号微波成像仪定标精度评价及业务产品介绍. 气象科技进展, (4): 136-143 [DOI: 10.3969/j.issn.2095-1973.2013.04.014]
Yang J T, Luojus K, Lemmetyinen J, Jiang L M and Pulliainen J. 2014. Comparison of SSMIS, AMSR-E and MWRI brightness temperature data//2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City, Canada: IEEE: 2574-2577 [DOI: 10.1109/IGARSS.2014.6946999http://dx.doi.org/10.1109/IGARSS.2014.6946999]
Comiso J C, Parkinson C L, Gersten R, et al., “Accelerated decline in the Arctic sea ice cover,” Geophysical Research Letters, vol.35, no.1,2008.
Zhang S G. 2012. An algorithm to detect arctic sea ice edge using microwave brightness temperature. Periodical of Ocean University of China, 42(11): 1-7
张树刚. 2012. 应用微波辐射亮温确定北极海冰边缘的算法. 中国海洋大学学报(自然科学版), 42(11): 1-7 [DOI: 10.16441/j.cnki.hdxb.2012.11.001http://dx.doi.org/10.16441/j.cnki.hdxb.2012.11.001]
Zhao J P and Ren J P. 2000. Study on the method to analyze parameters of arctic sea ice from airborne digital imagery. Journal of Remote Sensing, 21(4): 271-278
赵进平, 任敬萍. 2000. 从航空数字影像提取北极海冰形态参数的方法研究. 遥感学报, 21(4): 271-278 [DOI: 10.3321/j.issn:1007-4619.2000.04.006http://dx.doi.org/10.3321/j.issn:1007-4619.2000.04.006]
相关作者
相关机构