泛北极地区多年冻土活动层厚度演变
Spatiotemporal change in permafrost active layer thickness in the Pan-Arctic region
- 2020年24卷第8期 页码:1045-1059
纸质出版日期: 2020-08-07
DOI: 10.11834/jrs.20208469
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-08-07 ,
扫 描 看 全 文
蔡红艳,韩冬锐,杨林生,陈慕琳,杨小唤.2020.泛北极地区多年冻土活动层厚度演变.遥感学报,24(8): 1045-1057
Cai H Y,Han D R,Yang L S,Chen M L and Yang X H. 2020. Spatiotemporal change in permafrost active layer thickness in the Pan-Arctic region. Journal of Remote Sensing(Chinese),24(8): 1045-1057[DOI:10.11834/jrs.20208469]
深入理解泛北极地区多年冻土活动层厚度的演变
对于全球碳通量模拟、气候变化预测及泛北极地区冻融风险评估具有重要意义。目前开展的泛北极地区多年冻土活动层厚度模拟与分析
大多无法全覆盖或空间分辨率过低(25 km或是更大)
在景观尺度(公里级)上的多年冻土活动层厚度变化特征仍有待解析
尤其是关键基础设施区的活动层厚度变化仍不清楚。本研究基于站点监测数据、MOD11B3地表温度数据、MCD12C1土地覆盖数据
采用Stefan模型
在公里级空间分辨率上模拟泛北极地区2001年—2017年多年冻土活动层厚度
并解析泛北极地区及主要油气区多年冻土活动层厚度时空变化格局及主要原因。研究发现: 2001年—2017年泛北极地区约有78.4%的冻土区域多年冻土活动层厚度呈现增长趋势
尽管全区多年平均的增长速率为0.22 cm/a (p<0.05)
但具有较强的时空差异性。显著增长区主要集中在加拿大西北部的落基山脉及劳伦琴高原一带以及俄罗斯中西伯利亚高原中部地区
增加速率主要在0.5—1 cm/a;而减少区主要分布在加拿大的哈得孙湾沿岸平原、拉布拉多高原一带
俄罗斯的东西伯利亚山地北部、中西伯利亚高原的北部、贝加尔湖以东区域和泰拉尔半岛一带。泛北极地区主要油气区多年冻土活动层厚度也以增加为主
80%以上的油气区呈现增加趋势
增长速率在0.1—0.7 cm/a。泛北极地区多年冻土活动层厚度变化与气温变化在空间上具有较好的一致性;积雪厚度与活动层厚度关系复杂;不同植被类型的多年冻土活动层厚度有所差异(林地>草地>稀树草原>灌丛)
且多年冻土活动层厚度变化与植被转化方向一致。该成果将有助于深入理解北半球高纬度多年冻土区冻融格局
尤其可为冻土区的油气设施冻融风险识别与防控提供参考。
Understanding of the spatiotemporal changes in permafrost Active Layer Thickness (ALT) in the Pan-Arctic region is important for global carbon flux simulation
climate change prediction
and freeze–thaw risk assessment. Many studies have been conducted on this subject. However
most previous works have relied on limited sites or regional simulation with a spatial resolution of 25 km or coarser. The spatiotemporal characteristics of ALT change at a landscape level needs to be explored
especially in the crucial infrastructure concentrated region. This study simulated the permafrost ALT in the Pan-Arctic region from 2001 to 2017 at kilometer level using Stefan method and permafrost site records
MOD11B3
and MCD12C1 data. Results showed that approximately 78.4% of the study area had an increase trend in ALT with a rate of 0.22 cm/a (
p
<
0.05). Furthermore
the change in ALT spatially varied. The significantly increased areas were mainly distributed in Rocky Mountains
Laurentian Plateau of Canada
Central Siberian Plateau
and Central Siberian Plateau of Russia
with an increase rate between 0.5 and 1 cm/a. Meanwhile
the decreased areas were mainly concentrated in Hudson Bay Coastal Plain
Labrador Plateau of Canada
north East Siberian Mountains
north Central Siberian Plateau
east of Lake Baikal
and Taylor Peninsula of Russia. During this period
the ALT in 80% of the oil and gas areas had increased
with an increase rate between 0.1 and 0.7 cm/a. The variation in ALT was consistent with the temperature change. The ALT also varied with vegetation types in the order of ALT in forests
>
ALT in grasslands
>
ALT in savannahs
>
ALT in shrublands. However
the relationship between ALT and the thickness of snow cover was highly complicated. The results will deepen our understanding of the permafrost freeze–thaw pattern in the northern high latitudes and provide insights into the identification and prevention of freeze–thaw risk in the Pan-Arctic permafrost region.
泛北极地区气候变化多年冻土活动层厚度遥感
Pan-Arctic regionclimate changepermafrostactive layer thicknessremote sensing
Aalto J, Karjalainen O, Hjort J and Luoto M . 2018. Statistical forecasting of current and future circum-Arctic ground temperatures and active layer thickness. Geophysical Research Letters, 45(10): 4889-4898 [DOI: 10.1029/2018GL078007http://dx.doi.org/10.1029/2018GL078007 ]
Akerman H J and Johansson M . 2008. Thawing permafrost and thicker active layers in sub-arctic Sweden. Permafrost and Periglacial Processes, 19(3): 279-292 [DOI: 10.1002/ppp.626http://dx.doi.org/10.1002/ppp.626 ]
Brown J, Hinkel K M and Nelson F E . 2000. The circumpolar active layer monitoring (CALM) program: research designs and initial results. Polar Geography, 24(3): 166-258 [DOI: 10.1080/1088 9370009377698http://dx.doi.org/10.1080/10889370009377698 ]
Cao Y F and Liang S L . 2018. Recent advances in driving mechanisms of the Arctic amplification: a review. Chinese Science Bulletin, 63(26): 2757-2771
曹云锋, 梁顺林 . 2018. 北极地区快速升温的驱动机制研究进展. 科学通报, 63(26): 2757-2771 [DOI: 10.1360/N972018-00462http://dx.doi.org/10.1360/N972018-00462 ]
Ding H J, Zhou L L, Zha B and Zhai G Q . 2007. An analysis on the abnormal high temperature weather in the south Yangtze Valley during summer 2003. Journal of Zhejiang University (Science Edition), 34(1): 100-105, 120
丁华君, 周玲丽, 查贲, 翟国庆 . 2007. 2003年夏季江南异常高温天气分析. 浙江大学学报(理学版), 34(1): 100-105, 120 [DOI: 10.3321/j.issn:1008-9497.2007.01.023http://dx.doi.org/10.3321/j.issn:1008-9497.2007.01.023 ]
Du Q . 2011. Study on the characteristics of dense sandstone oil and gas reservoirs. West-China Exploration Engineering, 23(7): 37-38, 42
杜清 . 2011. 致密砂岩油气藏特征研究. 西部探矿工程, 23(7): 37-38, 42 [DOI: 10.3969/j.issn.1004-5716.2011.07.013http://dx.doi.org/10.3969/j.issn.1004-5716.2011.07.013 ]
Feng Y Q, Liang S H, Wu Q B, Chen J W, Tian X and Wu P . 2016. Vegetation responses to permafrost degradation in the Qinghai-Tibetan Plateau. Journal of Beijing Normal University (Natural Science), 52(3): 311-316
冯雨晴, 梁四海, 吴青柏, 陈建伟, 田鑫, 吴盼 . 2016. 冻土退化过程中植被覆盖度的变化研究. 北京师范大学学报(自然科学版), 52(3): 311-316 [DOI: 10.16360/j.cnki.jbnuns.2016.03.010http://dx.doi.org/10.16360/j.cnki.jbnuns.2016.03.010 ]
Frauenfeld O W, Zhang T J, Barry R G and Gilichinsky D . 2004. Interdecadal changes in seasonal freeze and thaw depths in Russia. Journal of Geophysical Research, 109 (D 5): D05101 [DOI: 10.1029/2003jd004245http://dx.doi.org/10.1029/2003jd004245 ]
Guo D L, Li D and Hua W . 2018. Quantifying air temperature evolution in the permafrost region from 1901 to 2014. International Journal of Climatology, 38(1): 66-76 [DOI: 10.1002/joc.5161http://dx.doi.org/10.1002/joc.5161 ]
Hayes D J, Kicklighter D W, McGuire A D, Chen M, Zhuang Q L, Yuan F M, Melillo J M and Wullschleger S D . 2014. The impacts of recent permafrost thaw on land-atmosphere greenhouse gas exchange. Environmental Research Letters, 9(4): 045005 [DOI: 10.1088/1748-9326/9/4/045005http://dx.doi.org/10.1088/1748-9326/9/4/045005 ]
Hinkel K M and Nelson F E . 2003. Spatial and temporal patterns of active layer thickness at circumpolar active layer monitoring (CALM) sites in northern Alaska, 1995-2000. Journal of Geophysical Research, 108 (D 2): 8168 [DOI: 10.1029/2001jd000927http://dx.doi.org/10.1029/2001jd000927 ]
Hu L Q, Wu P F, Liang F C and Zhang W H . 2014. Analyzing the effect of snow cover in spring and winter and air temperature on frozen ground depth in Xinjiang. Journal of Glaciology and Geocryology, 36(1): 48-54
胡列群, 武鹏飞, 梁凤超, 张伟航 . 2014. 新疆冬春季积雪及温度对冻土深度的影响分析. 冰川冻土, 36(1): 48-54 [DOI: 10.7522/j.issn.1000-0240.2014.0006http://dx.doi.org/10.7522/j.issn.1000-0240.2014.0006 ]
Karlsson J M, Lyon S W and Destouni G . 2012. Thermokarst lake, hydrological flow and water balance indicators of permafrost change in Western Siberia. Journal of Hydrology, 464-465: 459-466 [DOI: 10.1016/j.jhydrol.2012.07.037http://dx.doi.org/10.1016/j.jhydrol.2012.07.037 ]
Kim Y, Kimball J S, Glassy J and Du J Y . 2017. An extended global earth system data record on daily landscape freeze-thaw status determined from satellite passive microwave remote sensing. Earth System Science Data, 9(1): 133-147 [DOI: 10.5194/essd-9-133-2017http://dx.doi.org/10.5194/essd-9-133-2017 ]
Kong Y and Wang C H . 2017. Responses and changes in the permafrost and snow water equivalent in the Northern Hemisphere under a scenario of 1.5 ℃ warming. Climate Change Research, 13(4): 316-326
孔莹, 王澄海 . 2017. 全球升温1.5℃时北半球多年冻土及雪水当量的响应及其变化. 气候变化研究进展, 13(4): 316-326 [DOI: 10.12006/j.issn.1673-1719.2016.235http://dx.doi.org/10.12006/j.issn.1673-1719.2016.235 ]
Li K . 2017. Risk analysis and control measures of frost heaving and thaw collapsing in perma-frost regions. Oil-Gasfield Surface Engineering, 36(11): 55-57
李科 . 2017. 多年冻土区的输油管道冻融风险分析与防治措施. 油气田地面工程, 36(11): 55-57 [DOI: 10.3969/j.issn.1006-6896.2017.11.013http://dx.doi.org/10.3969/j.issn.1006-6896.2017.11.013 ]
Lujala P, Rød J K and Thieme N . 2007. Fighting over oil: introducing a new dataset. Conflict Management and Peace Science, 24(3): 239-256 [DOI: 10.1080/07388940701468526http://dx.doi.org/10.1080/07388940701468526 ]
Mölders N and Romanovsky V E . 2006. Long-term evaluation of the hydro-thermodynamic soil-vegetation scheme's frozen ground/permafrost component using observations at barrow, Alaska. Journal of Geophysical Research, 111 (D 4): D04105 [DOI: 10.1029/2005JD005957http://dx.doi.org/10.1029/2005JD005957 ]
Nelson F E, Anisimov O A and Shiklomanov N I . 2001. Subsidence risk from thawing permafrost. Nature, 410(6831): 889-890 [DOI: 10.1038/35073746http://dx.doi.org/10.1038/35073746 ]
Nicolsky D J, Romanovsky V E, Alexeev V A and Lawrence D M . 2007. Improved modeling of permafrost dynamics in a GCM land-surface scheme. Geophysical Research Letters, 34(8): L08501 [DOI: 10.1029/2007gl029525http://dx.doi.org/10.1029/2007gl029525 ]
Overpeck J, Hughen K, Hardy D, Bradley R, Case R, Douglas M, Finney B, Gajewski K, Jacoby G, Jennings A, Lamoureux S, Lasca A, MacDonald G, Moore J, Retelle M, Smith S, Wolfe A and Zielinski G . 1997. Arctic environmental change of the last four centuries. Science, 278(5341): 1251-1256 [DOI: 10.1126/science.278.5341.1251http://dx.doi.org/10.1126/science.278.5341.1251 ]
Park H, Fedorov A N, Zheleznyak M N, Konstantinov P Y and Walsh J E . 2015. Effect of snow cover on pan-Arctic permafrost thermal regimes. Climate Dynamics, 44( 9/10): 2873-2895 [DOI: 10.1007/s00382-014-2356-5http://dx.doi.org/10.1007/s00382-014-2356-5 ]
Park H, Iijima Y, Yabuki H, Ohta T, Walsh J, Kodama Y and Ohata T . 2011. The application of a coupled hydrological and biogeochemical model (change) for modeling of energy, water, and CO2 exchanges over a larch forest in Eastern Siberia. Journal of Geophysical Research, 116 (D 15): D15102 [DOI: 10.1029/2010JD015386http://dx.doi.org/10.1029/2010JD015386 ]
Park H, Kim Y and Kimball J S . 2016. Widespread permafrost vulnerability and soil active layer increases over the high northern latitudes inferred from satellite remote sensing and process model assessments. Remote Sensing of Environment, 175: 349-358 [DOI: 10.1016/j.rse.2015.12.046http://dx.doi.org/10.1016/j.rse.2015.12.046 ]
Peng X Q, Zhang T J, Frauenfeld O W, Wang K, Luo D L, Cao B, Su H, Jin H J and Wu Q B . 2018. Spatiotemporal changes in active layer thickness under contemporary and projected climate in the Northern Hemisphere. Journal of Climate, 31(1): 251-266 [DOI: 10.1175/JCLI-D-16-0721.1http://dx.doi.org/10.1175/JCLI-D-16-0721.1 ]
Qiao Z and Tian G J . 2014. Spatiotemporal diversity and regionalization of the urban thermal environment in Beijing. Journal of Remote Sensing, 18(3): 715-734
乔治, 田光进 . 2014. 北京市热环境时空分异与区划. 遥感学报, 18(3): 715-734 [DOI: 10.11834/jrs.20143030http://dx.doi.org/10.11834/jrs.20143030 ]
Qiao Z and Tian G J . 2015. Dynamic monitoring of the footprint and capacity for urban heat island in Beijing between 2001 and 2012 based on MODIS. Journal of Remote Sensing, 19(3): 476-484
乔治, 田光进 . 2015. 基于MODIS的2001年—2012年北京热岛足迹及容量动态监测. 遥感学报, 19(3): 476-484 [DOI: 10.11834/jrs.20154165http://dx.doi.org/10.11834/jrs.20154165 ]
Smith N V, Saatchi S S and Randerson J T . 2004. Trends in high northern latitude soil freeze and thaw cycles from 1988 to 2002. Journal of Geophysical Research, 109 (D 12): D12101 [DOI: 10.1029/2003jd004472http://dx.doi.org/10.1029/2003jd004472 ]
Streletskiy D A, Shiklomanov N I, Nelson F E and Klene A E . 2008. Thirteen years of observations at Alaskan CALM sites: Long-term active layer and ground surface temperature trends. Proceedings of the Ninth International Conference on Permafrost. Fairbanks: University of Alaska Press: 1727-1732.
Torre Jorgenson M, Harden J, Kanevskiy M, O'Donnell J, Wickland K, Ewing S, Manies K, Zhuang Q L, Shur Y, Striegl R and Koch J . 2013. Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes. Environmental Research Letters, 8(3): 035017 [DOI: 10.1088/1748-9326/8/3/035017http://dx.doi.org/10.1088/1748-9326/8/3/035017 ]
Vonk J E, Mann P J, Davydov S, Davydova A, Spencer R G M, Schade J, Sobczak W V, Zimov N, Zimov S, Bulygina E, Eglinton T I and Holmes R M . 2013. High biolability of ancient permafrost carbon upon thaw. Geophysical Research Letters, 40(11): 2689-2693 [DOI: 10.1002/grl.50348http://dx.doi.org/10.1002/grl.50348 ]
Wan Z M . 2014. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sensing of Environment, 140: 36-45 [DOI: 10.1016/j.rse.2013.08.027http://dx.doi.org/10.1016/j.rse.2013.08.027 ]
Wu X B, Nan Z T, Wang W Z and Zhao L . 2018. Simulation of the impact of vegetation and soil characteristics on permafrost over the Tibetan Plateau based on the Noah land surface model. Journal of Glaciology and Geocryology, 40(2): 279-287
吴小波, 南卓铜, 王维真, 赵林 . 2018. 基于Noah陆面过程模型模拟青藏高原植被和土壤特征对多年冻土的影响. 冰川冻土, 40(2): 279-287 [DOI: 10.7522/j.issn.1000-0240.2018.0032http://dx.doi.org/10.7522/j.issn.1000-0240.2018.0032 ]
Xu X M, Wu Q B and Zhang Z Q . 2017. Responses of active layer thickness on the Qinghai-Tibet Plateau to climate change. Journal of Glaciology and Geocryology, 39(1): 1-8
徐晓明, 吴青柏, 张中琼 . 2017. 青藏高原多年冻土活动层厚度对气候变化的响应. 冰川冻土, 39(1): 1-8 [DOI: 10.7522/j.issn.1000-0240.2017.0001http://dx.doi.org/10.7522/j.issn.1000-0240.2017.0001 ]
You M D, Li H B, Ge M and Zang S Y . 2018. The influence factors of permafrost active layer depth and their annual change in Heilongjiang Province. Journal of Glaciology and Geocryology, 40(3): 480-491
尤明东, 李海波, 葛敏, 臧淑英 . 2018. 黑龙江省冻土活动层厚度年际变化影响因素分析. 冰川冻土, 40(3): 480-491 [DOI: 10.7522/j.issn.1000-0240.2018.0053http://dx.doi.org/10.7522/j.issn.1000-0240.2018.0053 ]
Zhang T J, Frauenfeld O W, Serreze M C, Etringer A, Oelke C, McCreight J, Barry R G, Gilichinsky D, Yang D Q, Ye H C, Ling F and Chudinova S . 2005. Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. Journal of Geophysical Research, 110 (D 16): D16101 [DOI: 10.1029/2004JD005642http://dx.doi.org/10.1029/2004JD005642 ]
Zhang Y, Chen W J and Cihlar J . 2003. A process-based model for quantifying the impact of climate change on permafrost thermal regimes. Journal of Geophysical Research, 108 (D 22): 4695 [DOI: 10.1029/2002JD003354http://dx.doi.org/10.1029/2002JD003354 ]
Zhang Y, Chen W J and Riseborough D W . 2006. Temporal and spatial changes of permafrost in Canada since the end of the little ice age. Journal of Geophysical Research, 111 (D 22): D22103 [DOI: 10.1029/2006JD007284http://dx.doi.org/10.1029/2006JD007284 ]
Zhang W, Zhou J, Wang G X, Kinzelbach W, Cheng G D, Ye B S, He X B and Li H Y . 2013. Monitoring and modeling the influence of snow cover and organic soil on the active layer of permafrost on the Tibetan Plateau. Journal of Glaciology and Geocryology, 35(3): 528-540
张伟, 周剑, 王根绪, Kinzelbach W, 程国栋, 叶柏生, 何晓波, 李弘毅 . 2013. 积雪和有机质土对青藏高原冻土活动层的影响. 冰川冻土, 35(3): 528-540 [DOI: 10.7522/j.issn.1000-0240.2013.0062http://dx.doi.org/10.7522/j.issn.1000-0240.2013.0062 ]
Zhang Z Q and Wu Q B . 2012. Predicting changes of active layer thickness on the Qinghai-Tibet Plateau as climate warming. Journal of Glaciology and Geocryology, 34(3): 505-511
张中琼, 吴青柏 . 2012. 气候变化情景下青藏高原多年冻土活动层厚度变化预测. 冰川冻土, 34(3): 505-511
相关作者
相关机构