结合Sentinel-2光谱与纹理信息的冬小麦作物茬覆盖度估算
Estimation of winter wheat residue cover using spectral and textural information from Sentinel-2 data
- 2020年24卷第9期 页码:1108-1119
纸质出版日期: 2020-09-07
DOI: 10.11834/jrs.20208471
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-09-07 ,
扫 描 看 全 文
蔡文婷,赵书河,王亚梅,彭凡晨.2020.结合Sentinel-2光谱与纹理信息的冬小麦作物茬覆盖度估算.遥感学报,24(9): 1108-1119
CAI Wenting,ZHAO Shuhe,WANG Yamei,PENG Fanchen. 2020. Estimation of winter wheat residue cover using spectral and textural information from Sentinel-2 data. Journal of Remote Sensing(Chinese),24(9): 1108-1119[DOI:10.11834/jrs.20208471]
作物茬覆盖度的估算对于探究农业耕作方式对周围环境的影响具有十分重要的意义。目前,基于多光谱影像的作物茬指数是作物茬覆盖度估算的常用方法。然而,在作物茬高覆盖区域,指数法容易出现“饱和”现象。已有研究结果表明结合影像的光谱与纹理信息有助于改善指数法的“饱和”问题。Sentinel-2作为一颗多光谱卫星,空间分辨率可达10 m,与Landsat OLI相比,具有更丰富的纹理信息。因此,探究Sentinel-2光谱与纹理信息相结合在作物茬覆盖度估算上的潜力具有重要意义。本文以山东省禹城市为研究区,分析了Sentinel-2各波段反射率、归一化差值指数以及不同窗口大小下灰度共生矩阵统计量等遥感因子与野外实测作物茬覆盖度的相关性,并利用最优子集法对遥感因子进行筛选,构建作物茬覆盖度的最优估算模型。同时,使用留一法交叉验证对模型进行评价。结果表明在单因子分析中,归一化差异耕作指数NDTI(Normalized Difference Residue Index)与作物茬覆盖度的相关性最好,相关系数达0.735。使用NDTI、5×5窗口下Sentinel-2 8A波段的相关性统计量以及12波段的方差统计量构建的多元方程是作物茬覆盖度估算的最优模型,相关系数为0.869,均方根误差为11%。与仅使用光谱信息的最优模型相比,相关系数提高了0.094,均方根误差下降了3.5%。可见,结合Sentinel-2的纹理信息有助于提高作物茬覆盖度的估算精度。
As an important element of farmland ecosystems
Crop Residues Cover (CRC) provides a barrier against water erosion and improves soil structure and organic matter content. Timely and accurate estimation of CRC at regional scale is essential for understanding the ecosystem condition and interactions with the surrounding environment. Satellite remote sensing is an effective method of regional CRC estimation. Tillage indices based on multi-spectral satellite imagery data are commonly used in CRC estimation. However
this method is ineffective in high coverage areas due to “saturation”. Previous studies have shown that a combination of image spectral and textural information can solve saturation problems to a certain extent. Sentinel-2 is a new satellite mission that can provide observations at multi-spectral bands with spatial resolutions of 10
20
and 60 m. Sentinel-2 can provide more information about texture compared with the commonly used multi-spectral satellite Landsat-8 Operational Land Imager. Therefore
exploring the potential of combining spectral and textural information from Sentinel-2 data is an important task in CRC estimation.
The objectives of this study are to (1) analyze correlation between field measured CRC and satellite-derived variables such as Sentinel-2 band reflectance
tillage indices
and gray-level co-occurrence matrix statistics in different windows
and (2) determine the optimal CRC estimation method from optimal subset regression with various combinations of tillage indices and image textural features.
The results showed that the Normalized Difference Tillage Index (NDTI)
B12_CO (contrast of band12
B12 in window 5×5)
and B12_DI (dissimilarity of B12 in window 5×5) were significantly correlated with the measured CRC with correlation coefficient R values of 0.765
–0.641
–0.553. The estimation model based on NDTI outperformed the models based on other single variables. The model that combined the spectral and textural information in an optimal window (
R
=0.869, RMSE=11.0%) provided a more precise result than that based solely on spectral information (
R
=0.775 and RMSE=14.5%). The results demonstrated that a combination of spectral and textural information can improve the accuracy of CRC estimation.
Sentinel-2作物茬覆盖度作物茬指数灰度共生矩阵纹理窗口最优子集回归Landsat OLI
Sentinel-2crop residue coveragecrop residue indicesgray-level co-occurrence matrixtexture windowoptimal subset regression methodLandsat OLI
Asner G P, Scurlock J M O and Hicke J A. 2003. Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global Ecology and Biogeography, 12(3): 191-205 [DOI: 10.1046/j.1466-822X.2003.00026.xhttp://dx.doi.org/10.1046/j.1466-822X.2003.00026.x]
Chen S Y, Zhang X Y, Pei D and Sun H Y. 2005. Effects of corn straw mulching on soil temperature and soil evaporation of winter wheat field. Transactions of the Chinese Society of Agricultural Engineering, 21(10): 171-173
陈素英, 张喜英, 裴冬, 孙宏勇. 2005. 玉米秸秆覆盖对麦田土壤温度和土壤蒸发的影响. 农业工程学报, 21(10): 171-173 [DOI: 10.3321/j.issn:1002-6819.2005.10.039http://dx.doi.org/10.3321/j.issn:1002-6819.2005.10.039]
Daughtry C S T, Graham M W, Stern A J, Quemada M, Hively W D and Russ A L. 2018. Landsat-8 and Worldview-3 data for assessing crop residue cover//Proceedings of 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE [DOI: 10.1109/IGARSS.2018.8519473http://dx.doi.org/10.1109/IGARSS.2018.8519473]
Daughtry C S T, Hunt Jr E R and McMurtrey III J E. 2004. Assessing crop residue cover using shortwave infrared reflectance. Remote Sensing of Environment, 90(1): 126-134 [DOI: 10.1016/j.rse.2003.10.023http://dx.doi.org/10.1016/j.rse.2003.10.023]
Galloza M S, Crawford M M and Heathman G C. 2013. Crop residue modeling and mapping using Landsat, ALI, Hyperion and airborne remote sensing data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(2): 446-456 [DOI: 10.1109/JSTARS.2012.2222355http://dx.doi.org/10.1109/JSTARS.2012.2222355]
Gelder B K, Kaleita A L and Cruse R M. 2009. Estimating mean field residue cover on Midwestern soils using satellite imagery. Agronomy Journal, 101(3): 635-643 [DOI: 10.2134/agronj2007.0249http://dx.doi.org/10.2134/agronj2007.0249]
Haralick R M, Shanmugam K and Dinstein I. 1973. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6): 610-621 [DOI: 10.1109/TSMC.1973.4309314http://dx.doi.org/10.1109/TSMC.1973.4309314]
Hively W D, Lamb B T, Daughtry C S T, Shermeyer J, McCarty G W and Quemada M. 2018. Mapping crop residue and tillage intensity using WorldView-3 satellite shortwave infrared residue indices. Remote Sensing, 10(10): 1657 [DOI: 10.3390/rs10101657http://dx.doi.org/10.3390/rs10101657]
Huang J X, Luo Q, Liu X X and Zhang J. 2016. Winter wheat yield forecasting based on time series of MODIS NDVI. Transactions of the Chinese Society for Agricultural Machinery, 47(2): 295-301
黄健熙, 罗倩, 刘晓暄, 张洁. 2016. 基于时间序列MODIS NDVI的冬小麦产量预测方法. 农业机械学报, 47(2): 295-301 [DOI: 10.6041/j.issn.1000-1298.2016.02.039http://dx.doi.org/10.6041/j.issn.1000-1298.2016.02.039]
Jin X L, Ma J H, Wen Z D and Song K S. 2015. Estimation of maize residue cover using landsat-8 OLI image spectral information and textural features. Remote Sensing, 7(11): 14559-14575 [DOI: 10.3390/rs71114559http://dx.doi.org/10.3390/rs71114559]
Kim Oanh N T, Permadi D A, Hopke P K, Smith K R, Dong N P and Dang A N. 2018. Annual emissions of air toxics emitted from crop residue open burning in Southeast Asia over the period of 2010-2015. Atmospheric Environment, 187: 163-173 [DOI: 10.1016/j.atmosenv.2018.05.061http://dx.doi.org/10.1016/j.atmosenv.2018.05.061]
Lemke R L, Vandenbygaart A J, Campbell C A, Lafond G P and Grant B. 2010. Crop residue removal and fertilizer N: effects on soil organic carbon in a long-term crop rotation experiment on a Udic Boroll. Agriculture, Ecosystems and Environment, 135(1/2): 42-51 [DOI: 10.1016/j.agee.2009.08.010http://dx.doi.org/10.1016/j.agee.2009.08.010]
Li M Z, Yu X T, Gao Y K and Fan W Y. 2018. Remote sensing quantification on forest biomass based on SAR polarization decomposition and Landsat data. Journal of Beijing Forestry University, 40(2): 1-10
李明泽, 于欣彤, 高元科, 范文义. 2018. 基于SAR极化分解与Landsat数据的森林生物量遥感估测. 北京林业大学学报, 40(2): 1-10 [DOI: 10.13332/j.1000-1522.20170284http://dx.doi.org/10.13332/j.1000-1522.20170284]
McNairn H and Protz R. 1993. Mapping corn residue cover on agricultural fields in oxford county, Ontario, using thematic mapper. Canadian Journal of Remote Sensing, 19(2): 152-159 [DOI: 10.1080/07038992.1993.10874543http://dx.doi.org/10.1080/07038992.1993.10874543]
Najafi P, Navid H, Feizizadeh B and Eskandari I. 2018. Object-based satellite image analysis applied for crop residue estimating using Landsat OLI imagery. International Journal of Remote Sensing, 39(19): 6117-6136 [DOI: 10.1080/01431161.2018.1454621http://dx.doi.org/10.1080/01431161.2018.1454621]
Pesaresi M. 2000. Texture analysis for urban pattern recognition using fine-resolution panchromatic satellite imagery. Geographical and Environmental Modelling, 4(1): 43-63 [DOI: 10.1080/1361593 00111360http://dx.doi.org/10.1080/136159300111360]
Qi J G, Marsett R, Heilman P, Bieden-Bender S, Moran S, Goodrich D and Weltz M. 2002. RANGES improves satellite‐based information and land cover assessments in southwest United States. Eos, Transactions American Geophysical Union, 83(51): 601-606 [DOI: 10.1029/2002EO000411http://dx.doi.org/10.1029/2002EO000411]
Quemada M and Daughtry C S T. 2016. Spectral indices to improve crop residue cover estimation under varying moisture conditions. Remote Sensing, 8(8): 660 [DOI: 10.3390/rs8080660http://dx.doi.org/10.3390/rs8080660]
Quemada M, Hively W D, Daughtry C S T, Lamb B T and Shermeyer J. 2018. Improved crop residue cover estimates obtained by coupling spectral indices for residue and moisture. Remote Sensing of Environment, 206: 33-44 [DOI: 10.1016/j.rse.2017.12.012http://dx.doi.org/10.1016/j.rse.2017.12.012]
Smith W N, Grant B B, Campbell C A, McConkey B G, Desjardins R L, Kröbel R and Malhi S S. 2012. Crop residue removal effects on soil carbon: Measured and inter-model comparisons. Agriculture, Ecosystems and Environment, 161: 27-38 [DOI: 10.1016/j.agee.2012.07.024http://dx.doi.org/10.1016/j.agee.2012.07.024]
Sonmez N K and Slater B. 2016. Measuring intensity of tillage and plant residue cover using remote sensing. European Journal of Remote Sensing, 49(1): 121-135 [DOI: 10.5721/EuJRS20164907http://dx.doi.org/10.5721/EuJRS20164907]
Theil H. Principles of Econometrics. New York: Wiley, 1971
van Deventer A P, Ward A D, Gowda P H and Lyon J G. 1997. Using Thematic Mapper data to identify contrasting soil plains and tillage practices. Photogrammetric Engineering and Remote Sensing, 63(1): 87-93.
Wang L X, Xu S N, Li Q, Xue H X and Wu J S. 2016. Extraction of winter wheat planted area in Jiangsu province using decision tree and mixed-pixel methods. Transactions of the Chinese Society of Agricultural Engineering, 32(5): 182-187
王连喜, 徐胜男, 李琪, 薛红喜, 吴建生. 2016. 基于决策树和混合像元分解的江苏省冬小麦种植面积提取. 农业工程学报, 32(5): 182-187 [DOI: 10.11975/j.issn.1002-6819.2016.05.025http://dx.doi.org/10.11975/j.issn.1002-6819.2016.05.025]
Wilhelm W W, Johnson J M F, Hatfield J L, Voorhees W B and Linden D R. 2004. Crop and soil productivity response to corn residue removal: a literature review. Agronomy Journal, 96(1): 1-17.
Yin S, Wang X F, Xiao Y, Tani H, Zhong G S and Sun Z Y. 2017. Study on spatial distribution of crop residue burning and PM2.5 change in China. Environmental Pollution, 220: 204-221 [DOI: 10.1016/j.envpol.2016.09.040http://dx.doi.org/10.1016/j.envpol.2016.09.040]
Zhang M, Li Q Z, Meng J H and Wu B F. 2011a. Review of crop residue fractional cover monitoring with remote sensing. Spectroscopy and Spectral Analysis, 31(12): 3200-3205
张淼, 李强子, 蒙继华, 吴炳方. 2011a. 作物残茬覆盖度遥感监测研究进展. 光谱学与光谱分析, 31(12): 3200-3205 [DOI: 10.3964/j.issn.1000-0593 201112-3200-06http://dx.doi.org/10.3964/j.issn.1000-0593201112-3200-06]
Zhang M, Meng J H, Dong T F, Wu B F and Sun H J. 2012. Spectral responses analysis of soybean residues. Journal of Remote Sensing, 16(6): 1115-1129
张淼, 蒙继华, 董泰锋, 吴炳方, 孙洪江. 2012. 大豆残茬光谱响应特征研究. 遥感学报, 16(6): 1115-1129 [DOI: 10.11834/jrs.20121305http://dx.doi.org/10.11834/jrs.20121305]
Zhang M, Meng J H, Li Q Z, Wu B F, Du X and Zhang F F. 2011b. Estimation of winter wheat residue cover with HJ-1B data. Transactions of the CSAE, 27(S1): 352-357
张淼, 蒙继华, 李强子, 吴炳方, 杜鑫, 张飞飞. 2011b. 基于HJ-1B数据的冬小麦留茬覆盖度遥感估算. 农业工程学报, 27(S1): 352-357
Zhao Q Q, Jiang L G, Li W Y and Feng Z M. 2017. Spatial-temporal pattern change of winter wheat area in northwest Shandong Province during 2000―2014. Remote Sensing for Land and Resources, 29(2): 173-180
赵庆庆, 姜鲁光, 李文叶, 封志明. 2017. 鲁西北平原冬小麦种植格局时空变化: 2000―2014. 国土资源遥感, 29(2): 173-180 [DOI: 10.6046/gtzyyg.2017.02.25http://dx.doi.org/10.6046/gtzyyg.2017.02.25]
Zheng B J, Campbell J B, de Beurs K M. 2012. Remote sensing of crop residue cover using multi-temporal Landsat imagery. Remote Sensing of Environment, 117: 177-183 [DOI: 10.1016/j.rse.2011.09.016http://dx.doi.org/10.1016/j.rse.2011.09.016]
Zheng Y, Wu B F, Zhang M. 2017. Estimating the above ground biomass of winter wheat using the Sentinel-2 data. Journal of Remote Sensing, 21(2):318-328
郑阳,吴炳方,张淼. 2017. Sentinel-2数据的冬小麦地上干生物量估算及评价. 遥感学报,21(2):318-328
Zhu B, Su J F, Han Z W, Yin C and Wang T J. 2010. Analysis of a serious air pollution event resulting from crop residue burning over Nanjing and surrounding regions. China Environmental Science, 30(5): 585-592
朱彬, 苏继锋, 韩志伟, 尹聪, 王体健. 2010. 秸秆焚烧导致南京及周边地区一次严重空气污染过程的分析. 中国环境科学, 30(5): 585-592
相关作者
相关机构