天宫二号三维成像微波高度计大气斜距时延校正
Correction of the tropospheric slant path delay of Tiangong-2 Interferometric Imaging Radar Altimeter
- 2020年24卷第9期 页码:1059-1069
纸质出版日期: 2020-09-07
DOI: 10.11834/jrs.20208509
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-09-07 ,
扫 描 看 全 文
陈洁好,张云华,董晓.2020.天宫二号三维成像微波高度计大气斜距时延校正.遥感学报,24(9): 1059-1069
Chen J H,Zhang Y H and Dong X. 2020. Correction of the tropospheric slant path delay of Tiangong-2 Interferometric Imaging Radar Altimeter. Journal of Remote Sensing(Chinese),24(9): 1059-1069[DOI:10.11834/jrs.20208509]
2016-09-15随天宫二号空间实验室发射升空的三维成像微波高度计(简称天宫二号成像高度计)是国际上第一个采用小入射角、短干涉基线实现宽刈幅海面高度测量的高度计。由于天宫二号没有为成像高度计配备用于大气校正的微波辐射计,因此需要采用模型方法对大气时延进行精确估计。传统高度计采用星下点观测,通常只考虑大气折射率的改变引起传播速度变化的时延。天宫二号成像高度计采用偏离星下点1°—8°的小角度观测,因此在进行大气传输时延校正时不仅要考虑雷达信号传播速度的改变,还应考虑由于传播方向改变带来的路径弯曲效应。本文针对天宫二号成像高度计的观测几何特性,提出基于数值天气模型校正大气斜距时延的算法:采用欧洲中期天气预报中心的天气数据和大气分层模型,通过气象参数计算大气折射率;根据高度计参数和各层大气折射率,依赖折射定律和信号传播的几何关系在路径上逐层积分,计算大气斜距时延的估值。通过对天宫二号成像高度计的陆地角反射器定标实测数据进行处理,经大气斜距时延校正后,角反射器的剩余距离误差的标准差约为6.2 cm,达到厘米量级的斜距测量精度,验证了在不同入射角情况下,所提出的大气斜距时延校正算法的有效性和可靠性。
Launched on September 15
2019
the Interferometric Imaging Radar Altimeter (InIRA) onboard the Chinese Tiangong-2 space laboratory is the first spaceborne interferometric radar altimeter that can obtain wide-swath ocean topography measurements by adopting small incidence angles from 1° to 8° with a short baseline. InIRA achieves various technological breakthroughs
meanwhile
it also brings some challenges in data processing because no radiometer is onboard the Tiangong-2 space laboratory. Considering signal path delays is a premise for InIRA to meet its geocoding and Sea Surface Height (SSH) measurement goals
a mathematical model-based method for tropospheric path delay correction should be developed. Unlike traditional nadir-looking altimeters
which only require the propagation delay related to the velocity variation along a line path
the Tiangong-2 InIRA must consider the additional bending of radio waves for its small incidence angles. In this study
a tropospheric slant path delay correction algorithm is developed using the ray-tracing technique based on Fermat’s principle and on the numeric weather model from the European Center for Medium-range Weather Forecasts. Two calibration campaigns are conducted in March 2017 and September 2018
which recorded 12 measurement data from 9 corner reflectors. Results show that the standard deviation of the residual error range after the tropospheric slant path delay correction is approximately 6.2 cm
which indicates that a centimeter-level range accuracy is realized. Therefore
the effectiveness and reliability of the proposed algorithm in different small incidence angles are validated.
天宫二号微波高度计干湿大气时延斜距时延校正数值天气模型路径弯曲
Tiangong-2 Interferometric Imaging Radar Altimeter (InIRA)atmospheric path delayslant path delay correctionNumeric Weather Model (NWM)bending of radio waves
Abdalla S. 2013. Evaluation of radar altimeter path delay using ECMWF pressure-level and model-level fields. A report for ESA contract 21519/08/ I-OL. European Centre for Medium Range Weather Forecasts: 1-4
Berrisford P, Dee D, Poli P, Brugge R, Fielding M, Fuentes M, Kållberg P W, Kobayashi S, Uppala S and Simmons A. 2011. The ERA-interim archive Version 2.0. European Centre for Medium-Range Weather Forecasts: 2-4
Chen Q M, Song S L and Zhu W Y. 2012. An analysis of the accuracy of zenith tropospheric delay calculated from ECMWF/NCEP data over Asian area. Chinese Journal of Geophysics, 55(5): 1541-1548
陈钦明, 宋淑丽, 朱文耀. 2012. 亚洲地区ECMWF/NCEP资料计算ZTD的精度分析. 地球物理学报, 55(5): 1541-1548 [DOI: 10.6038/j.issn.0001-5733.2012.05.011http://dx.doi.org/10.6038/j.issn.0001-5733.2012.05.011]
Choi J. 1996. Tropospheric effects of time delays and angle of arrivals in the low elevation angle for radiowave propagation//Proceedings of MILCOM '96 IEEE Military Communications Conference. McLean: IEEE: 1041-1044 [DOI: 10.1109/MILCOM.1996.571440http://dx.doi.org/10.1109/MILCOM.1996.571440]
CODE. 2012. Global ionosphere maps produced by CODE[EB/OL]. [2018-11-16].http://aiuws.unibe.ch/ionospherehttp://aiuws.unibe.ch/ionosphere
Cong X Y, Balss U, Eineder M and Fritz T. 2012. Imaging geodesy - centimeter-level ranging accuracy with TerraSAR-X: an update. IEEE Geoscience and Remote Sensing Letters, 9(5): 948-952 [DOI: 10.1109/lgrs.2012.2187042http://dx.doi.org/10.1109/lgrs.2012.2187042]
Deng M J, Zhang G, Zhao R S, Li S N and Li J S. 2018. Application of the atmospheric delay correction model in YG-13A range calibration. Journal of Remote Sensing, 22(3): 373-380
邓明军,张过,赵瑞山,李少宁,李建松.2018.顾及大气延迟效应的YG-13A斜距标定.遥感学报,22(3):373-380 [DOI: 10.11834/jrs.20187116http://dx.doi.org/10.11834/jrs.20187116]
Ding C B, Liu J Y, Lei B and Qiu X L. 2017. Preliminary exploration of systematic geolocation accuracy of GF-3 SAR satellite system. Journal of Radars, 6(1): 11-16
丁赤飚, 刘佳音, 雷斌, 仇晓兰. 2017. 高分三号SAR卫星系统级几何定位精度初探. 雷达学报, 6(1): 11-16 [DOI: 10.12000/JR17024http://dx.doi.org/10.12000/JR17024]
Dong X, Zhang Y H and Zhai W S. 2017. Design and algorithms of the Tiangong-2 interferometric imaging radar altimeter processor//Proceedings of Progress in Electromagnetics Research Symposium - Spring. St. Petersburg: IEEE: 3802-3803 [DOI: 10.1109/PIERS.2017.8262420http://dx.doi.org/10.1109/PIERS.2017.8262420]
Eineder M, Minet C, Steigenberger P, Cong X Y and Fritz T. 2011. Imaging geodesy - toward centimeter-level ranging accuracy with TerraSAR-X. IEEE Transactions on Geoscience and Remote Sensing, 49(2): 661-671 [DOI: 10.1109/TGRS.2010.2060264http://dx.doi.org/10.1109/TGRS.2010.2060264]
ITU. 2017. ITU-R P. 453-12 The radio refractive index: its formula and refractivity data. Geneva: ITU - Radiocommunication Sector: 2-3
Jehle M, Perler D, Small D, Schubert A and Meier E. 2008. Estimation of atmospheric path delays in TerraSAR-X data using models vs. measurements. Sensors, 8(12): 8479-8491 [DOI: 10.3390/s81 28479http://dx.doi.org/10.3390/s8128479]
Pany T, Pesec P and Stangl G. 2001. Atmospheric GPS slant path delays and ray tracing through numerical weather models, a comparison. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(3): 183-188 [DOI: 10.1016/S1464-1895(01)00044-8http://dx.doi.org/10.1016/S1464-1895(01)00044-8]
Xu Y S, Gao L and Zhang Y H. 2017. New generation altimetry satellite SWOT and its reference to China’s swath altimetrysatellite. Remote Sensing Technology and Application, 32(1): 84-94
徐永生, 高乐, 张云华. 2017. 美国新一代测高卫星SWOT——评述我国宽刈幅干涉卫星的发展借鉴. 遥感技术与应用, 32(1): 84-94 [DOI: 10.11873/j.issn.1004-0323.2017.1.0084http://dx.doi.org/10.11873/j.issn.1004-0323.2017.1.0084]
Xu Z W, Wu J and Wu Z S. 2004. A survey of ionospheric effects on space-based radar. Waves in Random Media, 14(2): S189-S273 [DOI: 10.1088/0959-7174/14/2/008http://dx.doi.org/10.1088/0959-7174/14/2/008]
Yang Z Q, Chen X M and Zhao Z W. 2008. Empirical model for radio wave refractive error correction of troposphere. Chinese Journal of Radio Science, 23(3): 580-584
杨志强, 陈祥明, 赵振维. 2008. 对流层电波折射误差修正经验模型研究. 电波科学学报, 23(3): 580-584 [DOI: 10.3969/j.issn.1005-0388.2008.03.037http://dx.doi.org/10.3969/j.issn.1005-0388.2008.03.037]
Zhang Y G, Jia Y J, Fan C Q, Zhang J and Lin M S. 2013. HY-2A satellite radar altimeter error correction algorithm and verification. Engineering Sciences, 15(7): 53-61
张有广, 贾永君, 范陈清, 张杰, 林明森. 2013. 海洋二号卫星雷达高度计测高误差校正算法及验证. 中国工程科学, 15(7): 53-61 [DOI: 10.3969/j.issn.1009-1742.2013.07.008http://dx.doi.org/10.3969/j.issn.1009-1742.2013.07.008]
Zhang Y H, Jiang J S, Zhang H Y and Zhang D H. 2000. Spaceborne imaging altimeter for topographic mapping//Proceedings of IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Honolulu: IEEE: 2349-2351 [DOI: 10.1109/IGARSS.2000.858405http://dx.doi.org/10.1109/IGARSS.2000.858405]
Zhang Y H, Jiang J S, Zhang X K, Xu K, Yan J Y, Jiang C H and Lei L Q. 2003. Design and preliminary experiment of china imaging altimeter//Proceedings of the SPIE 4894, Microwave Remote Sensing of the Atmosphere and Environment III. Hangzhou: SPIE: 190-199 [DOI: 10.1117/12.466230http://dx.doi.org/10.1117/12.466230]
Zhang Y H, Zhang X K, Meng X, Luo W, Zhou Z X and Jiang J S. 2007. An interferometric imaging altimeter applied for both ocean and land observation//Proceedings of 2007 IEEE International Geoscience and Remote Sensing Symposium. Barcelona: IEEE: 3821-3824 [DOI: 10.1109/IGARSS.2007.4423676http://dx.doi.org/10.1109/IGARSS.2007.4423676]
Zhao T G. 2011. Tropospheric Modeling and Delay Error Analysis Based on the GNSS Signals. Harbin: Harbin Institute of Technology: 12-22
赵铁刚. 2011. 基于GNSS信号的对流层建模与延迟误差分析. 哈尔滨: 哈尔滨工业大学: 12-22
相关文章
相关作者
相关机构