三种国际主流的北极卫星遥感冰速产品评估和分析
Assessment of Arctic remote sensing ice motion products based on ice drift buoys
- 2020年24卷第7期 页码:867-882
纸质出版日期: 2020-07-07
DOI: 10.11834/jrs.20209038
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-07-07 ,
扫 描 看 全 文
施骞,苏洁.2020.三种国际主流的北极卫星遥感冰速产品评估和分析.遥感学报,24(7): 867-882
SHI Qian,SU Jie. 2020. Assessment of Arctic remote sensing ice motion products based on ice drift buoys. Journal of Remote Sensing(Chinese),24(7): 867-882
冰速是海冰的重要参数,但是受资料长度限制,对卫星遥感冰速产品进行系统比较和评估的研究还较少。利用2009年—2017年国际北极浮标计划(IABP)浮标冰速数据,较系统地评估了不同时间间隔的遥感反演冰速产品在北冰洋内区和弗拉姆海峡附近海区的表现。结果显示,对北冰洋内区而言,1 d间隔的美国国家雪冰数据中心(NSIDC)遥感冰速冬季误差整体大于夏季,冬季高估了波弗特海南部海冰向西的运动,低估了从喀拉海流向格陵兰岛北部的穿极流。对于5种2 d间隔冰速产品而言,产品精度不完全取决于源数据空间分辨率的高低,反演算法的改进和数据融合均能提高冰速的精度,均方根误差大小的顺序是OSISAF-Merged <OSISAF-AMSR <Ifremer-AMSR <OSISAF-SSM < OSISAF-ASCAT。对于4种使用相同反演算法的3 d间隔的冰速产品,产品的均方根误差取决于源数据分辨率,空间分辨率最高的Ifremer-AMSR冰速均方根误差最小。比较不同种类、不同时间间隔冰速的月平均均方根误差后可知,采用3 d间隔反演的冰速由于能够忽略更多短时间尺度海冰运动,其冰速均方根误差低于2 d间隔的冰速。在弗拉姆海峡,除Ifremer-AMSR外,其余冰速产品均具有较大的经向偏差和均方根误差。在冰速较快弗拉姆海峡,冰速产品均方根误差取决于源数据的分辨率。
Sea ice motion derived from remote sensing is a key parameter for sea ice. Systematic comparison and assessment of satellite remote sensing ice motion products are still deficient because of limited data length.This study examines the performance of remote sensing ice velocity products with different time intervals in the central Arctic.The region around Fram Straitare systematically evaluated by employing the International Arctic Buoy Programme(IABP) buoy data from 2009 to 2017.The results show that for the central Arctic
the NSIDC ice velocity with one-day interval hasgreater error in winter than that in summer.In winter
the western icemotion in the southern part of the Beaufort Seais overestimated
whereasthe transpolar drift stream from the Kara Sea to the northern armof Greenland is underestimated. For five ice motion products with two-day interval
the accuracy does not depend completely on resolutions of source data.The improvement of the ice motion retrieval algorithm and the merging method can also improve the accuracy of the ice velocity.The order of the root mean square errors (RMSE) is OSISAF-Merged <OSISAF-AMSR<Ifremer-AMSR< OSISAF-SSM<OSISAF-ASCAT.The RMSEs of ice motion products with three-day interval
which employ the same retrieval algorithm
aredependent on the spatial resolution of the source data. Ifremer-AMSR has the lowest RMSEbecause of its source data has high spatial resolution. Ice velocity products with three-day interval canneglect sea ice movement in a short-time scale.The RMSE of ice velocity acquired is lower than that of thetwo-day interval. In Fram Strait
the other ice velocity products except for Ifremer-AMSR have large meridionalbiases and RMSEs.Moreover
theice velocity is fast in the strait
andthe RMSE of the ice velocity product depends on the resolution of the source data.
北极冰漂流浮标冰速遥感产品评估弗拉姆海峡
Arcticice drift buoysea ice motionassessment of remote sensing productsFram Strait
Comiso J C. 2012. Large decadal decline of the Arctic multiyear ice cover. Journal of Climate, 25(4): 1176-1193 [DOI: 10.1175/JCLI-D-11-00113.1http://dx.doi.org/10.1175/JCLI-D-11-00113.1]
Dai M R, Arbetter T E and Meier W N. 2006. Data assimilation of sea-ice motion vectors: sensitivity to the parameterization of sea-ice strength. Annals of Glaciology, 44: 357-360 [DOI: 10.3189/172756406781811187http://dx.doi.org/10.3189/172756406781811187]
Dybkjaer G. 2009. Validation and Monitoring Document for OSI SAF Medium Resolution Sea IceDrift Product-v0.0. EUMETSAT OSI SAF-Ocean and Sea Ice Satellite Application Facility, December
Ezraty R, Girard-Ardhuin F and Croizé-Fillon D. 2007. Sea ice drift in the central Arctic estimated using the 89 GHz brightness temperatures of the Advanced Microwave Scanning Radiometer-User’s manual, v2.0. ERS d’Arch. et de Trait., Inst. Fr. de Rech. pour l’Exploit. de la Mer, Brest, France
Fowler C, Emery W, and Tschudi M. 2003. Polar Pathfinder daily 25 km EASE-grid sea ice motion vectors
Haarpaintner J, and Spreen G. 2007. Use of enhanced-resolution QuikSCAT/SeaWinds data for operational ice services and climate research: Sea ice edge, type, concentration, and drift. IEEE Transactions on Geoscience and Remote Sensing, 45(10), 3131-3137 [DOI: 10.1109/TGRS.2007.895419http://dx.doi.org/10.1109/TGRS.2007.895419]
Hwang B. 2013. Inter-comparison of satellite sea ice motion with drifting buoy data. International Journal of Remote Sensing, 34(24): 8741-8763 [DOI: 10.1080/01431161.2013.848309http://dx.doi.org/10.1080/01431161.2013.848309]
Krumpen T, Gerdes R, Haas C, Hendricks S, Herber A, Selyuzhenok V, Smedsrud L and Spreen G. 2016. Recent summer sea ice thickness surveys in Fram Strait and associated ice volume fluxes. The Cryosphere, 10(2): 523-534 [DOI: 10.5194/tc-10-523-2016http://dx.doi.org/10.5194/tc-10-523-2016]
Kwok R, Curlander J C, McConnell R, and Pang S S. 1990. An ice-motion tracking system at the Alaska SAR facility. IEEE Journal of Oceanic Engineering, 15(1), 44-54 [DOI: 10.1109/48.46835http://dx.doi.org/10.1109/48.46835]
Kwok R, Schweiger A, Rothrock D A, Pang S and Kottmeier C. 1998. Sea ice motion from satellite passive microwave imagery assessed with ERS SAR and buoy motions. Journal of Geophysical Research: Oceans, 103(C4): 8191-8214 [DOI: 10.1029/97JC03334http://dx.doi.org/10.1029/97JC03334]
Kwok R, Cunningham G F, Wensnahan M, Rigor I, Zwally H J, and Yi D. 2009. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003-2008. Journal of Geophysical Research: Oceans, 114(C7): C07005 [DOI: 10.1029/2009JC005312http://dx.doi.org/10.1029/2009JC005312]
Kwok R, Spreen G and Pang S. 2013. Arctic sea ice circulation and drift speed: decadal trends and ocean currents. Journal of Geophysical Research: Oceans, 118(5): 2408-2425 [DOI: 10.1002/jgrc.20191http://dx.doi.org/10.1002/jgrc.20191]
Lavergne T, Eastwood S, Teffah Z, Schyberg Hand Breivik L A. 2010. Sea ice motion from low‐resolution satellite sensors: an alternative method and its validation in the Arctic. Journal of Geophysical Research: Oceans, 115(C10): C10032 [DOI: 10.1029/2009JC 005958http://dx.doi.org/10.1029/2009JC005958]
LiuA K, Zhao Y, and Wu, S Y. 1999. Arctic sea ice drift from wavelet analysis of NSCAT and special sensor microwave imager data. Journal of Geophysical Research: Oceans, 104(C5): 11529-11538 [DOI: 10.1029/1998JC900115http://dx.doi.org/10.1029/1998JC900115]
Maslanik J A, Fowler C, Stroeve J, Drobot S, Zwally J, Yi D, and Emery W. 2007. A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea‐ice loss. Geophysical Research Letters, 34(24):L24501 [DOI: 10.1029/2007GL032043http://dx.doi.org/10.1029/2007GL032043]
Rampal P, Weiss J and Marsan D. 2009. Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979-2007. Journal of Geophysical Research: Oceans, 114(C5): C05013 [DOI: 10.1029/ 2008JC005066http://dx.doi.org/10.1029/2008JC005066]
Stark J D, Ridley J, Martin M andHines A. 2008. Sea ice concentration and motion assimilation in a sea ice-ocean model. Journal of Geophysical Research: Oceans, 113(C5) [DOI: 10.1029/2007JC 004224]
Stoffelen A. 1998. Toward the true near‐surface wind speed: Error modeling and calibration using triple collocation. Journal of Geophysical Research: Oceans, 103(C4): 7755-7766 [DOI: 10.1029/97JC03180http://dx.doi.org/10.1029/97JC03180]
Sumata H, Lavergne T, Girard‐Ardhuin F, Kimura N, Tschudi M A, Kauker F, Karcher M and Gerdes R. 2014. An intercomparison of Arctic ice drift products to deduce uncertainty estimates. Journal of Geophysical Research: Oceans, 119(8): 4887-4921 [DOI: 10.1002/2013JC009724http://dx.doi.org/10.1002/2013JC009724]
Thomas D. 1999. The quality of sea ice velocity estimates. Journal of Geophysical Research: Oceans, 104(C6): 13627-13652 [DOI: 10.1029/1999JC900086http://dx.doi.org/10.1029/1999JC900086]
Tschudi M, Fowler C, Maslanik J, Stewart J S and Meier W. 2016. Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 3. [s.l.]: National Snow and Ice Data Center Distributed Active Archive Center
Wei J F, Zhang X D and Wang Z M. 2018. Impacts of extratropical storm tracks on Arctic sea ice export through Fram Strait. Climate Dynamics, 52(3): 2235-2246[DOI: 10.1007/s00382-018-4254-8http://dx.doi.org/10.1007/s00382-018-4254-8]
相关作者
相关机构