中国陆域1∶100万植被指数UNVI多维数据集(2017)
UNVI multidimensional dataset of 2017 China’s terrestrial at 1∶1 000000 scale
- 2020年24卷第11期 页码:1293-1298
纸质出版日期: 2020-11-07
DOI: 10.11834/jrs.20209063
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-11-07 ,
扫 描 看 全 文
张立福,钟涛,刘华亮,朱曼,王楠,童庆禧.2020.中国陆域1∶100万植被指数UNVI多维数据集(2017).遥感学报,24(11): 1293-1298
Zhang L F,Zhong T,Liu H L,Zhu M,Wang N and Tong Q X. 2020. UNVI multidimensional dataset of 2017 China’s terrestrial at 1∶1 000000 scale. Journal of Remote Sensing(Chinese), 24(11):1293-1298
中国陆域1∶100万植被指数UNVI(Universal Normalized Vegetation Index)多维数据集(2017)是在分析MODIS地表反射率产品数据MOD09GA特点,参照传统的植被指数合成算法,为了满足植被长时间序列变化研究需要而生成的16 d合成UNVI数据集。本研究合成的UNVI数据集在反映植被密度、植被覆盖度、植被光合作用速率,以及反演植被理化参数方面,与传统的NDVI和EVI合成数据集相比,具有明显的优势。合成算法主要分为两步:首先对16 d合成周期内存在无效值和反射率负值的MODIS数据进行筛选处理;然后读取合成周期内的质量控制波段数据统计“无云”数据的天数,并根据“无云”数据的天数选择相应合成算法进行UNVI的16 d合成,从而获得2017年中国陆域时间分辨率为16 d,空间分辨率约为0.00286°的UNVI时间序列影像。基于本文提出的合成算法生成的中国陆域UNVI数据集,采用1∶100万标准经纬线分幅,共64景(Tile),每景所覆盖的经纬度范围为6°×4°,为方便起见,数据集采用MDD多维数据格式(Multi-Dimensional Dataset)存储,每个.mdd文件下存放每景2017年所有时相的影像数据。同时为便于数据下载,全部数据按照分幅压缩为64个.zip文件,压缩后的数据量约为3.78 GB。本数据集能为从事全球变化研究的科研人员提供更方便的植被指数长时间序列数据产品。
In this study
a Universal Normalized Vegetation Index (UNVI) composite optimization algorithm was designed on the basis of the data characteristics of MOD09GA and traditional vegetation index composite algorithm. This algorithm was used to generate the UNVI multidimensional dataset of the 1∶1 000 000 16-day composite vegetation index of China’s terrestrial in 2017. It provides convenient vegetation index long-term sequence data products for researchers engaged in global change research.
The UNVI composite algorithm mainly consists two steps. The Moderate resolution imaging spectroradiometer data with invalid and negative reflectance values in the 16-day composite cycle are filtered. The number of days of the quality-free band data in the composite cycle is then counted. The corresponding synthesis algorithm for the 16-day composite of UNVI in accordance with the number of days of “cloudless” data is selected.
The UNVI time series images with a time resolution of 16 days and a spatial resolution of approximately 0.00286° in China are generated using the proposed algorithm. The UNVI dataset adopts 1∶1 000 000 standard latitude and longitude framing
where the range covered by each scene is 6°×4°. For convenience
the dataset
including a total of 64 1∶10 000 UNVI framing products in the country’s land area
is in multidimensional data format and stored in TSB mode. Researchers can select the corresponding regional vegetation index product download according to their research area.
The UNVI dataset used in this study has obvious advantages compared with traditional normalized difference vegetation index and enhanced vegetation index composite datasets in reflecting vegetation density
vegetation coverage
vegetation photosynthesis rate
and inversion of vegetation physical and chemical parameters. Relevant researchers can use this dataset to conduct annual analysis of vegetation phenological changes. In addition
this dataset can be used to generate quantitative physicochemical parameter inversion products based on UNVI datasets and conduct research on phenological changes throughout the year.
遥感UNVI中国陆域MODIS植被指数多维数据集
remote sensingUNVIChina terrestrialMODISvegetation indexMulti-Dimensional Dataset
Cihlar J and Howarth J. 1994. Detection and removal of cloud contamination from AVHRR images. IEEE Transactions on Geoscience and Remote Sensing, 32(3): 583-589 [DOI: 10.1109/36.297976http://dx.doi.org/10.1109/36.297976]
Duchemin B and Maisongrande P. 2002. Normalisation of directional effects in 10-day global syntheses derived from VEGETATION/SPOT: I. Investigation of concepts based on simulation. Remote Sensing of Environment, 81(1): 90-100 [DOI: 10.1016/S0034-4257(01)00336-4http://dx.doi.org/10.1016/S0034-4257(01)00336-4]
Guo N. 2003. Vegetation index and its advances. Arid Meteorology, 21(4): 71-75
郭铌. 2003. 植被指数及其研究进展. 干旱气象, 21(4): 71-75
Gutman G G. 1991. Vegetation indices from AVHRR: an update and future prospects. Remote Sensing of Environment, 35(2/3): 121-136 [DOI: 10.1016/0034-4257(91)90005-Qhttp://dx.doi.org/10.1016/0034-4257(91)90005-Q]
Huete A, Didan K, Miura T, Rodriguez E P, Gao X and Ferreira L G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1/2): 195-213 [DOI: 10.1016/S0034-4257(02)00096-2http://dx.doi.org/10.1016/S0034-4257(02)00096-2]
Huete A, Justice C and Van Leeuwen W. 1999. MODIS vegetation index (MOD 13) algorithm theoretical basis document (ATBD) Version 3.0[EB/OL]. http://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdfhttp://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf.
Long X, Li J and Liu Q H. 2013. Review on VI compositing algorithm. Remote Sensing Technology and Application, 28(6): 969-977
龙鑫, 李静, 柳钦火. 2013. 植被指数合成算法综述. 遥感技术与应用, 28(6): 969-977
Tang Y. 2004. A Study of Normalization of Directional Effects in Vegetation Index Using BRDF of Typical Crops Form MODIS Data. Beijing: Chinese Academy of Sciences
唐勇. 2004. MODIS植被指数角度归一化与地表参数遥感反演系统实现. 北京: 中国科学院研究生院
Van Leeuwen W J D, Huete A R and Laing T W. 1999. MODIS vegetation index compositing approach: a prototype with AVHRR data. Remote Sensing of Environment, 69(3): 264-280 [DOI: 10.1016/S0034-4257(99)00022-Xhttp://dx.doi.org/10.1016/S0034-4257(99)00022-X]
Walthall C L, Norman J M, Welles J M, Campbell G and Blad B L. 1985. Simple equation to approximate the bidirectional reflectance from vegetative canopies and bare soil surfaces. Applied Optics, 24(3): 383-387 [DOI: 10.1364/AO.24.000383http://dx.doi.org/10.1364/AO.24.000383]
Wang Z X, Liu C and Huete A. 2003. From AVHRR-NDVI to MODIS-EVI: advances in vegetation index research. Acta Ecologica Sinica, 23(5): 979-987
王正兴, 刘闯, Huete A. 2003. 植被指数研究进展: 从AVHRR-NDVI到MODIS-EVI. 生态学报, 23(5): 979-987 [DOI: 10.3321/j.issn:1000-0933.2003.05.020http://dx.doi.org/10.3321/j.issn:1000-0933.2003.05.020]
Zhang L F, Chen H, Sun X J, Fu D J and Tong Q X. 2017. Designing spatial-temporal-spectral integrated storage structure of multi-dimensional remote sensing images. Journal of Remote Sensing, 21(1): 62-73
张立福, 陈浩, 孙雪剑, 付东杰, 童庆禧. 2017. 多维遥感数据时空谱一体化存储结构设计. 遥感学报, 21(1): 62-73 [DOI: 10.11834/jrs.20176091http://dx.doi.org/10.11834/jrs.20176091]
Zhang L F, Fujiwara N, Furumi S, Muramatsu K, Daigo M and Zhang L P. 2007a. Assessment of the universal pattern decomposition method using MODIS and ETM+ data. International Journal of Remote Sensing, 28(1): 125-142 [DOI: 10.1080/0143116060061 7228http://dx.doi.org/10.1080/01431160600617228]
Zhang L F, Furumi S, Muramatsu K, Fujiwara N, Daigo M and Zhang L P. 2007b. A new vegetation index based on the universal pattern decomposition method. International Journal of Remote Sensing, 28(1): 107-124 [DOI: 10.1080/01431160600857402http://dx.doi.org/10.1080/01431160600857402]
Zhang L F, Liu B, Zhang B and Tong Q X. 2010. An evaluation of the effect of the spectral response function of satellite sensors on the precision of the universal pattern decomposition method. International Journal of Remote Sensing, 31(8): 2083-2090 [DOI: 10.1080/01431160903246675http://dx.doi.org/10.1080/01431160903246675]
Zhang L F, Qiao N, Baig M H A, Huang C P, Lv X, Sun X J and Zhang Z. 2019. Monitoring vegetation dynamics using the universal normalized vegetation index (UNVI): an optimized vegetation index-VIUPD. Remote Sensing Letters, 10(7): 629-638 [DOI: 10.1080/2150704X.2019.1597298http://dx.doi.org/10.1080/2150704X.2019.1597298]
相关作者
相关机构