北极重要海峡气温—海冰密集度影响滞后效应分析
Analysis on the lag effect of temperature - sea ice concentration in key Arctic Straits
- 2020年24卷第11期 页码:1419-1432
纸质出版日期: 2020-11-07
DOI: 10.11834/jrs.20209066
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-11-07 ,
扫 描 看 全 文
黄季夏,孙宇晗,王利,曹云锋,杨林生.2020.北极重要海峡气温—海冰密集度影响滞后效应分析.遥感学报,24(11): 1419-1432
Huang J X,Sun Y H,Wang L,Cao Y F and Yang L S. 2020. Analysis on the lag effect of temperature - sea ice concentration in key Arctic Straits. Journal of Remote Sensing(Chinese), 24(11):1419-1432
全球变暖导致北极海冰的面积与厚度逐步减小,这一趋势为北极通航提供了可能,北极航道在北极地缘环境格局中的战略地位日益提升。北极地区的重要海峡作为“冰上丝绸之路”运输的重要交通枢纽,其冰情变化在北极航道的开通中起到直接影响作用。本研究以北极地区东北航道和西北航道上14个重要海峡近35年的海冰密集度为研究对象,采用分布式滞后非线性模型,研究海冰表面气温对北极重要海峡海冰密集度变化的阈值和滞后效应。研究结果表明:(1)除白令海峡、尤戈尔斯基沙尔海峡和喀拉海峡以外,其他11个海峡气温对海冰密集度变化的影响都存在高温阈值,并且其阈值集中在-10℃附近;(2)高温对于海冰密集度变化的影响存在0—3月的滞后期,而低温的滞后期为0—4月;(3)14个海峡在非线性滞后模型中表现出不尽相同的滞后效应,存在空间异质性特征。滞后期内高温影响最为剧烈的是维利基茨基海峡,相对累积效应值为-3.34%(-5.6% — -1.1%);(4)整体上看,东北航道滞后有效期与西北航道相比较长,东北航道受温度影响的滞后效应值比西北航道的要大,且在高纬环境地区,高温对海冰密集度的相对变化的影响较为明显。
In the context of global warming
the area and thickness of arctic sea ice is gradually decreasing
which provides the possibility for arctic navigation
promotes the strategic position of Arctic channel
and changes the Arctic geo-environmental pattern. The straits of the Arctic region serve as an important transportation hub for ‘Polar Silk Road’
and their changes in ice conditions directly affect the opening of the Arctic passage. This study takes the sea ice concentration in the northeast passage of the arctic region and the important straits on the northwest passage for nearly 35 years as the research object and adopts the method of the distributed lag nonlinear model. The effects of sea ice surface temperature exposure factors on sea ice concentration change in arctic strait are studied. Studying the threshold and lag effects of sea-ice surface temperature on sea-ice concentration changes in important arctic straits. The research results show that: (1) In addition to the Bering strait
the other 11 straits have a high temperature threshold for the influence of sea ice concentration changes
and their thresholds are concentrated around -10 °C; (2) The effect of high temperature on the change of sea ice concentration has a lag period of 0—3 months
while the lag period of low temperature is 0—4 months. (3) The 14 straits show different lag effects and spatial heterogeneity in the nonlinear lag model. Vilkitsky is the strait with the most severe influence of high temperature in the lag period
and the relative cumulative effect value is -3.34% (-5.6% — -1.1%); (4) On the whole
the lag period of the northeast passage is longer than that of the northwest passage
and the lag effect value of the northeast passage affected by temperature is larger than that of the northwest passage. In addition
high temperature has a more obvious impact on the change of relative sea ice in the high-latitude environment.
北极地缘环境冰上丝绸之路关键海峡分布式滞后非线性模型滞后效应
arctic geo-environmentalPolar Silk Roadkey straitsDLNMlagged effect
Akaike H. 1973. Information theory and an extension of the maximum likelihood principle//Petrov B and Csáki F. Proceedings of the 2nd International Symposium on Information Theory. Budapest: Akademiai Kiado
Allison I. 1989. The east antarctic sea ice zone: ice characteristics and drift. GeoJournal, 18(1): 103-115 [DOI: 10.1007/BF00722394http://dx.doi.org/10.1007/BF00722394]
Arctic Council. 2009. Arctic Marine Shipping Assessment 2009. Protection of the Arctic Marine Environment Working Group: 1-194.
Brooks, Daniel G.1986. Akaike Information Criterion Statistics. Technometrics,31(2):270-271.[DOI :10.2307/2348776http://dx.doi.org/10.2307/2348776]
Dominici F, McDermott A, Zeger S L and Samet J M. 2002. On the use of generalized additive models in time-series studies of air pollution and health. American Journal of Epidemiology, 156(3): 193-203 [DOI: 10.1093/aje/kwf062http://dx.doi.org/10.1093/aje/kwf062]
Eldevik T, Risebrobakken B, Bjune A E, Andersson C, Birks H J B, Dokken T M, Drange H, Glessmer M S, Li C, Nilsen J E Ø, Otterå O H, Richter K and Skagseth Ø. 2014. A brief history of climate – the northern seas from the last glacial maximum to global warming. Quaternary Science Reviews, 106: 225-246 [DOI: 10.1016/j.quascirev.2014.06.028http://dx.doi.org/10.1016/j.quascirev.2014.06.028]
Fu Q. 2012. Research on the Variation of Ice Condition in the Key Areas of the Northwest Passage. Dalian: Dalian Maritime University
付强. 2012. 北极西北航道通航关键海区海冰变化规律研究. 大连: 大连海事大学
Gasparrini A, Armstrong B and Kenward M G. 2010. Distributed lag non-linear models. Statistics in Medicine, 29(21): 2224-2234 [DOI: 10.1002/sim.3940http://dx.doi.org/10.1002/sim.3940]
Gasparrini A .2011.Distributed Lag Linear and Non-Linear Models in R: The Package dlnm. Journal of Statal Software, 43(8):1-20. [DOI: 10.18637/jss.v043.i08http://dx.doi.org/10.18637/jss.v043.i08]
Goosse H, Gerdes R, Kauker F and Köberle C. 2004. Influence of the exchanges between the Atlantic and the Arctic on sea ice volume variations during the period 1955-97. Journal of Climate, 17(6): 1294-1305 [DOI: 10.1175/1520-0442(2004)017<1294:iotebt>2.0.co;2http://dx.doi.org/10.1175/1520-0442(2004)017<1294:iotebt>2.0.co;2]
Gu S H, He T F, Lu B B, Xu Q Q, Mei Q H and Zhang S H. 2016. Measures and application for attributable risk from distributed lag non-linear model. Chinese Journal of Health Statistics, 33(6): 959-962
谷少华, 贺天锋, 陆蓓蓓, 徐倩倩, 梅秋红, 张思恒. 2016. 基于分布滞后非线性模型的归因风险评估方法及应用. 中国卫生统计, 33(6): 959-962
Hastie T J and Tibshirani R J. 1990. Generalized Additive Models. London: Chapman and Hall: 587-602
Huang J X, Tan J and Yu W W. 2017. Temperature and cardiovascular mortality associations in four southern Chinese cities: a time-series study using a distributed lag non-linear model. Sustainability, 9(3): 321 [DOI: 10.3390/su9030321http://dx.doi.org/10.3390/su9030321]
Jia L L. 2015. Spatio-temporal Variability of Arctic Sea Ice in 2003-2013. Yantai: Ludong University: 4-5
贾丽莉. 2015. 2003-2013年北极圈海冰时空变化研究. 烟台: 鲁东大学: 4-5
Ke C Q, Peng H T, Sun B and Xie H J. 2013. Spatio-temporal variability of Arctic sea ice from 2002 to 2011. Journal of Remote Sensing, 17(2): 452-466
柯长青, 彭海涛, 孙波, 谢红接. 2013. 2002年—2011年北极海冰时空变化分析. 遥感学报, 17(2): 452-466 [DOI: 10.11834/jrs.20132044http://dx.doi.org/10.11834/jrs.20132044]
Kong A T, Liu J, Xu X and Zuo F. 2016. Spatio-Temporal variability of Arctic sea ice extent and its numerical analysis with sea surface temperature and air temperature. Journal of Geo-information Science, 18(6): 797-804
孔爱婷, 刘健, 余旭, 左菲. 2016. 北极海冰范围时空变化及其与海温气温间的数值分析. 地球信息科学学报, 18(6): 797-804 [DOI: 10.3724/SP.J.1047.2016.00797http://dx.doi.org/10.3724/SP.J.1047.2016.00797]
Li L H, McClean J L, Miller A J, Eisenman I, Hendershott M C and Papadopoulos C A. 2014. Processes driving sea ice variability in the Bering Sea in an eddying ocean/sea ice model: mean seasonal cycle. Ocean Modelling, 84: 51-66 [DOI: 10.1016/j.ocemod.2014.09.006http://dx.doi.org/10.1016/j.ocemod.2014.09.006]
Lin R P, Zhou T J, Xue F and Zhang L X. 2012. The global monsoon variability revealed by NCEP/NCAR reanalysis data. Chinese Journal of Atmospheric Sciences, 36(5): 1027-1040
林壬萍, 周天军, 薛峰, 张丽霞. 2012. NCEP/NCAR再分析资料所揭示的全球季风降水变化. 大气科学, 36(5): 1027-1040 [DOI: 10.3878/j.issn.1006-9895.2012.11222http://dx.doi.org/10.3878/j.issn.1006-9895.2012.11222]
Liu Y J. 2017. Time Series Analysis of Arctic sea ice by Using Multi-source Remotely Sensed Data. Wuhan: Wuhan University
刘一君. 2017. 基于多源遥感影像的北极海冰时序变化分析研究. 武汉: 武汉大学
Liu Y X. 2016. Antarctic and Arctic Sea Ice Concentration Estimation and Sea Ice Extent Time Series Analysis. Wuhan: Wuhan University: 15-25
刘艳霞. 2016. 南北极海冰密集度估算与海冰范围变化时序研究. 武汉: 武汉大学: 15-25
Massom R A, Comiso J C, Worby A P, Lytle V I and Stock L. 1999. Regional classes of sea ice cover in the east antarctic pack observed from satellite and in situ data during a winter time period. Remote Sensing of Environment, 68(1): 61-76 [DOI: 10.1016/S0034-4257(98)00100-Xhttp://dx.doi.org/10.1016/S0034-4257(98)00100-X]
Meng S, Li M, Tian Z X and Zhang L. 2013. Characteristics of the sea ice variation in the Arctic northeast Passage. Marine Forecasts, 30(2): 8-13
孟上, 李明, 田忠翔, 张林. 2013. 北极东北航道海冰变化特征分析研究. 海洋预报, 30(2): 8-13 [DOI: 10.11737/j.issn.1003-0239.2013.02.002http://dx.doi.org/10.11737/j.issn.1003-0239.2013.02.002]
Overpeck J T, Otto-Bliesner B L, Miller G H, Muhs D R, Alley R B and Kiehl J T. 2006. Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science, 311(5768): 1747-50 [DOI: 10.1126/science.1115159http://dx.doi.org/10.1126/science.1115159]
Parkinson C L, Cavalieri D J, Gloersen P, Zwally H J and Comiso J C. 1999. Arctic sea ice extents, areas, and trends, 1978-1996. Journal of Geophysical Research, 104(C9): 20837-20856 [DOI: 10.1029/1999jc900082http://dx.doi.org/10.1029/1999jc900082]
Peng Z W and Wang Y C. 2014. Significance and domestic impact of navigable Arctic channel. Port and Waterway Engineering, (7): 86-89, 109
彭振武, 王云闯. 2014. 北极航道通航的重要意义及对我国的影响. 水运工程, (7): 86-89, 109 [DOI: 10.3969/j.issn.1002-4972.2014.07.018http://dx.doi.org/10.3969/j.issn.1002-4972.2014.07.018]
Rodrigues J. 2009. The increase in the length of the ice-free season in the Arctic. Cold Regions Science and Technology, 59(1): 78-101 [DOI: 10.1016/j.coldregions.2009.05.006http://dx.doi.org/10.1016/j.coldregions.2009.05.006]
Schwartz J. 2000. The distributed lag between air pollution and daily deaths. Epidemiology, 11(3): 320-326 [DOI: 10.1097/00001648-200005000-00016http://dx.doi.org/10.1097/00001648-200005000-00016]
Shibata H, Tateyama K, Enomoto H and Takahashi S. 2011. Interannual changes in sea-ice conditions on the Arctic Sea Route obtained by satellite microwave data. Annals of Glaciology, 52(58): 237-247 [DOI: 10.3189/172756411797252329http://dx.doi.org/10.3189/172756411797252329]
Stroeve J C, Markus T, Boisvert L, Miller J and Barrett A. 2014. Changes in Arctic melt season and implications for sea ice loss. Geophysical Research Letters, 41(4): 1216-1225 [DOI: 10.1002/2013GL058951http://dx.doi.org/10.1002/2013GL058951]
Su J, Hao G H, Ye X X and Wang W B. 2013. The experiment and validation of sea ice concentration AMSR-E retrieval algorithm in polar region. Journal of Remote Sensing, 17(3): 495-513
苏洁, 郝光华, 叶鑫欣, 王维波. 2013. 极区海冰密集度AMSR-E数据反演算法的试验与验证. 遥感学报, 17(3): 495-513 [DOI: 10.11834/jrs.20132043http://dx.doi.org/10.11834/jrs.20132043]
Su J, Xu D, Zhao J P and Li X. 2010. Features of Northwest Passage sea ice’s distribution and variation under arctic rapidly warming condition. Chinese Journal of Polar Research, 22(2): 104-124
苏洁, 徐栋, 赵进平, 李翔. 2010. 北极加速变暖条件下西北航道的海冰分布变化特征. 极地研究, 22(2): 104-124 [DOI: 10.3724/SP.J.1084.2010.00104http://dx.doi.org/10.3724/SP.J.1084.2010.00104]
Wood S N. 2006. Generalized Additive Models: An Introduction with R. London: Chapman and Hall/CRC
Wu F M, He J H and Qi L. 2014. Arctic Sea ice declining and its impact on the cold Eurasian winters: a review. Advances in Earth Science, 29(8): 913-921
武丰民, 何金海, 祁莉. 2014. 北极海冰消融及其对欧亚冬季低温影响的研究进展. 地球科学进展, 29(8): 913-921 [DOI: 10.11867/j.issn.1001-8166.2014.08.0913http://dx.doi.org/10.11867/j.issn.1001-8166.2014.08.0913]
Xie X, He J H and Qi L. 2011. A review on applicability evaluation of four reanalysis datasets in China. Journal of Meteorology and environment, 27(5): 58-65
谢潇, 何金海, 祁莉. 2011. 4种再分析资料在中国区域的适用性研究进展. 气象与环境学报, 27(5): 58-65 [DOI: 10.3969/j.issn.1673-503X.2011.05.011http://dx.doi.org/10.3969/j.issn.1673-503X.2011.05.011]
Yang Q H, Li C H, Xing J Y, Li Q, Zhang L and Li M. 2012. Arctic sea ice forecasting experiments in the summer of 2010. Chinese Journal of Polar Research, 24(1): 87-94
杨清华, 李春花, 邢建勇, 李群, 张林, 李明. 2012. 2010年夏季北极海冰数值预报试验. 极地研究, 24(1): 87-94 [DOI: 10.3724/SP.J.1084.2012.00087http://dx.doi.org/10.3724/SP.J.1084.2012.00087]
Yao W J and Zhao J P. 2013. Study on multiyear variations of sea ice in the Laptev Sea of the Arctic Ocean. Chinese Journal of Polar Research, 25(3): 218-225
姚文峻, 赵进平. 2013. 北极拉普捷夫海海冰多年变化研究. 极地研究, 25(3): 218-225 [DOI: 10.3724/SP.J.1084.2013.00218http://dx.doi.org/10.3724/SP.J.1084.2013.00218]
相关文章
相关作者
相关机构