印度洋及太平洋海表盐度时空特征分析
Spatiotemporal characteristics of sea surface salinity of Indian and Pacific Oceans
- 2020年24卷第10期 页码:1193-1205
纸质出版日期: 2020-10-07
DOI: 10.11834/jrs.20209068
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-10-07 ,
扫 描 看 全 文
李艳艳,董庆,任永政,孔凡萍,殷紫.2020.印度洋及太平洋海表盐度时空特征分析.遥感学报,24(10): 1193-1205
Li Y Y,Dong Q,Ren Y Z,Kong F P and Yin Z. 2020. Spatiotemporal characteristics of sea surface salinity of Indian and Pacific Oceans. Journal of Remote Sensing(Chinese), 24(10):1193-1205[DOI:10.11834/jrs.20209068]
目前对印度洋和太平洋海表盐度变化的大尺度分析相对较少,Aquarius作为海表盐度的观测卫星,其观测数据在分析海表盐度时空特征时有着不可替代的优势。为了降低观测资料本身的误差对分析结果的影响,文本首先利用质量—距离双重加权方法生成新的高精度Aquarius网格化月均海表盐度场,并基于此盐度场和Argo资料对2011-09至2015-05印度洋及太平洋海表盐度的时空特征进行了分析。结果显示,盐度分布和纬度有明显的相关性,整体呈现低、高纬偏低,中纬偏高的态势,纬度极值随时间并没有很明显的变化,然而时间最大值随纬度的变化曲线呈现明显的以赤道为中心的近似中心对称分布特征。分析显示印度洋和太平洋盐度分布主要包括4个高盐区和4个低盐区,但每个盐度区的变化趋势与幅度不尽相同。
Sea Surface Salinity (SSS) is a key element of marine dynamic environment that plays an important role in many sea gas interactions and ocean processes. At present
large-scale analysis of Indian and Pacific Oceans are limited and the majority of investigations are based on in situ observation or reanalysis data. As an SSS observation satellite
Aquarius has a unique advantage in analyzing the characteristics of SSS distribution. Therefore
this study aims to analyze distribution characteristics of surface salinity in the Indian and Pacific Oceans based on Aquarius and Argo data.
New high-accuracy monthly
<math id="M1"><mn mathvariant="normal">0.25</mn><mo>°</mo><mtext> </mtext><mo>×</mo><mtext> </mtext><mn mathvariant="normal">0.25</mn><mo>°</mo></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20247931&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20247928&type=
15.83266640
2.20133328
gridded SSS fields were first generated using dual quality-distance weighting method based on Aquarius L2 orbital SSS data to reduce the influence of observation data error on the analysis results. SSS distribution characteristics of Indian and Pacific Oceans are analyzed on the basis of these new and gridded Argo SSS fields.
The analysis results showed that low SSS values are obtained in low and high latitudes and high SSS values are achieved in the middle latitude. The latitude in which the average SSS reaches the maximum value has no evident change with month
while the month in which the average SSS reaches the maximum value in each latitude line is estimated to be symmetrical with the equator and June as the center. A high-salinity zone exists in each midlatitude of North and South Pacific as well as southern Indian Oceans. Arabian Sea in the northern Indian Ocean is also a high-salinity area. The Bay of Bengal in the northern Indian Ocean and the tropical Pacific are low-salinity areas. Although an atypical region
SSS rangeability of the area near the land of southeastern China is very high. The periodic change of SSS in this area has a certain impact on the frequency and intensity of storm surge in the southeastern coast of China. The analysis results between Aquarius SSS and Argo SSS are similar
except for a few differences. One typical difference is an evident coalescence zone along the latitude of 8°N in the Pacific Ocean according to Aquarius SSS fields but is missing according to Argo SSS fields.
Therefore
SSS values have clear correlations with latitude. Four high-salt areas and four low-salt areas are observed in this region
and each region is characterized with different change trends and amplitudes. Mutual responses are observed among these areas.
遥感海表盐度时空特征印度洋太平洋AquariusArgo
remote sensingsea surface salinityspatiotemporal characteristicsIndian OceanPacific OceanAquariusArgo
Bryan F and Bachman S. 2015. Isohaline salinity budget of the North Atlantic salinity maximum. Journal of Physical Oceanography, 45(3): 724-736 [DOI: 10.1175/jpo-d-14-0172.1http://dx.doi.org/10.1175/jpo-d-14-0172.1]
Cooper N S. 1988. The effect of salinity on tropical ocean models. Journal of Physical Oceanography, 18(5): 697-707 [DOI: 10.1175/1520-0485(1988)018<0697:TEOSOT>2.0.CO;2http://dx.doi.org/10.1175/1520-0485(1988)018<0697:TEOSOT>2.0.CO;2]
Corbett C M, Subrahmanyam B and Giese B S. 2017. A comparison of sea surface salinity in the equatorial Pacific Ocean during the 1997-1998, 2012-2013, and 2014-2015 ENSO events. Climate Dynamics, 49(9/10): 3513-3526 [DOI: 10.1007/s00382-017-3527-yhttp://dx.doi.org/10.1007/s00382-017-3527-y]
Delcroix T, Henin C, Porte V and Arkin P. 1996. Precipitation and sea-surface salinity in the tropical Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 43(7): 1123-1141 [DOI: 10.1016/0967-0637(96)00048-9http://dx.doi.org/10.1016/0967-0637(96)00048-9]
Delcroix T, McPhaden M J, Dessier A and Gouriou Y. 2005. Time and space scales for sea surface salinity in the tropical oceans. Deep Sea Research Part I: Oceanographic Research Papers, 52(5): 787-813 [DOI: 10.1016/j.dsr.2004.11.012http://dx.doi.org/10.1016/j.dsr.2004.11.012]
Dudani S A. 1976. The distance-weighted k-nearest-neighbor rule. IEEE Transactions on Systems, Man, and Cybernetics, SMC-6(4): 325-327 [DOI: 10.1109/TSMC.1976.5408784http://dx.doi.org/10.1109/TSMC.1976.5408784]
Font J, Camps A, Borges A, Martín-Neira M, Boutin J, Reul N, Kerr Y H, Hahne A and Mecklenburg S. 2010. SMOS: the challenging sea surface salinity measurement from space. Proceedings of the IEEE, 98(5): 649-665 [DOI: 10.1109/jproc.2009.2033096http://dx.doi.org/10.1109/jproc.2009.2033096]
Fousiya T S, Parekh A and Gnanaseelan C. 2016. Interannual variability of upper ocean stratification in Bay of Bengal: observational and modeling aspects. Theoretical and Applied Climatology, 126(1/2): 285-301 [DOI: 10.1007/s00704-015-1574-zhttp://dx.doi.org/10.1007/s00704-015-1574-z]
Han W Q and McCreary Jr J P. 2001. Modeling salinity distributions in the Indian Ocean. Journal of Geophysical Research: Oceans, 106(C1): 859-877 [DOI: 10.1029/2000JC000316http://dx.doi.org/10.1029/2000JC000316]
Hasson A, Delcroix T and Boutin J. 2013. Formation and variability of the South Pacific Sea Surface Salinity maximum in recent decades. Journal of Geophysical Research: Oceans, 118(10): 5109-5116 [DOI: 10.1002/jgrc.20367http://dx.doi.org/10.1002/jgrc.20367]
Kao H Y, Lagerloef G S E, Lee T, Melnichenko O, Meissner T and Hacker P. 2018. Assessment of Aquarius sea surface salinity. Remote Sensing, 10(9): 1341 [DOI: 10.3390/rs10091341http://dx.doi.org/10.3390/rs10091341]
Lagerloef G, Colomb F R, Le Vine D, Wentz F, Yueh S, Ruf C, Lilly J, Gunn J, Chao Y, deCharon A, Feldman G and Swift C. 2008. The Aquarius/SAC-D mission: designed to meet the salinity remote-sensing challenge. Oceanography, 21(1): 68-81 [DOI: 10.5670/oceanog.2008.68http://dx.doi.org/10.5670/oceanog.2008.68]
Lagerloef G S E, Swift C T and Le Vine D M. 1995. Sea surface salinity: the next remote sensing challenge. Oceanography, 8(2): 44-50 [DOI: 10.5670/oceanog.1995.17http://dx.doi.org/10.5670/oceanog.1995.17]
Le Vine D M, Lagerloef G S E, Colomb F R, Yueh S H and Pellerano F A. 2007. Aquarius: an instrument to monitor sea surface salinity from space. IEEE Transactions on Geoscience and Remote Sensing, 45(7): 2040-2050 [DOI: 10.1109/tgrs.2007.898092http://dx.doi.org/10.1109/tgrs.2007.898092]
Li Y L and Han W Q. 2016. Causes for intraseasonal sea surface salinity variability in the western tropical Pacific Ocean and its seasonality. Journal of Geophysical Research: Oceans, 121(1): 85-103 [DOI: 10.1002/2015jc011413http://dx.doi.org/10.1002/2015jc011413]
Li Y L, Wang F and Han W Q. 2013. Interannual sea surface salinity variations observed in the tropical North Pacific Ocean. Geophysical Research Letters, 40(10): 2194-2199 [DOI: 10.1002/grl.50429http://dx.doi.org/10.1002/grl.50429]
Li Y Y, Dong Q and Ren Y Z. 2019. Aquarius sea surface salinity gridding method based on dual quality–distance weighting. Remote Sensing, 11(9): 1131 [DOI: 10.3390/rs11091131http://dx.doi.org/10.3390/rs11091131]
Lilly J M and Lagerloef G S E. 2008. Aquarius Level 3 Processing Algorithm Theoretical Basis Document. Version 0.9. Greenbelt: Aquarius Ground Segment
Maes C. 2000. Salinity variability in the equatorial Pacific Ocean during the 1993-98 period. Geophysical Research Letters, 27(11): 1659-1662 [DOI: 10.1029/1999gl011261http://dx.doi.org/10.1029/1999gl011261]
Melnichenko O, Hacker P, Maximenko N, Lagerloef G and Potemra J. 2016. Optimum interpolation analysis of Aquarius sea surface salinity. Journal of Geophysical Research: Oceans, 121(1): 602-616 [DOI: 10.1002/2015jc011343http://dx.doi.org/10.1002/2015jc011343]
Mueller T G, Pusuluri N B, Mathias K K, Cornelius P L, Barnhisel R I and Shearer S A. 2004. Map quality for ordinary kriging and inverse distance weighted interpolation. Soil Science Society of America Journal, 68(6): 2042-2047 [DOI: 10.2136/sssaj2004.2042http://dx.doi.org/10.2136/sssaj2004.2042]
Nagano A, Hasegawa T, Ueki I and Ando K. 2017. El Niño–Southern Oscillation‐time scale covariation of sea surface salinity and freshwater flux in the western tropical and northern subtropical Pacific. Geophysical Research Letters, 44(13): 6895-6903 [DOI: 10.1002/2017gl073573http://dx.doi.org/10.1002/2017gl073573]
Oka E and Ando K. 2004. Stability of temperature and conductivity sensors of Argo profiling floats. Journal of Oceanography, 60(2): 253-258 [DOI: 10.1023/B:JOCE.0000038331.10108.79http://dx.doi.org/10.1023/B:JOCE.0000038331.10108.79]
Riser S C, Ren L and Wong A. 2008. Salinity in Argo: a modern view of a changing ocean. Oceanography, 21(1): 56-67 [DOI: 10.5670/oceanog.2008.67http://dx.doi.org/10.5670/oceanog.2008.67]
Roemmich D and The Argo Steering Team. 2009. Argo: the challenge of continuing 10 years of progress. Oceanography, 22(3): 46-55 [DOI: 10.5670/oceanog.2009.65http://dx.doi.org/10.5670/oceanog.2009.65]
Sun Q W, Du Y and Zhang Y H. 2017. Seasonal variability of sea surface salinity in tropical Southern Indian Ocean based on Argo and Aquarius observations. Journal of Tropical Oceanography, 36(4): 25-34
孙启伟, 杜岩, 张玉红. 2017. 利用Argo和Aquarius卫星观测研究热带南印度洋海表盐度的季节变化. 热带海洋学报, 36(4): 25-34
Yu L S. 2011. A global relationship between the ocean water cycle and near-surface salinity. Journal of Geophysical Research: Oceans, 116(C10): C10025 [DOI: 10.1029/2010jc006937http://dx.doi.org/10.1029/2010jc006937]
Zhang Y H. 2014. Interannual Variability of Salinity in the Tropical Indian Ocean and its Relationship with IOD. Guangzhou: South China Sea Institute of Oceanology, Chinese Academy of Sciences: 1-135
张玉红. 2014. 热带印度洋盐度年际变化及其与IOD的关系. 广州: 中国科学院南海海洋研究所: 1-135
Zhang Y H, Du Y and Feng M. 2018. Multiple time scale variability of the sea surface salinity dipole mode in the tropical Indian Ocean. Journal of Climate, 31(1): 283-296 [DOI: 10.1175/Jcli-D-17-0271.1http://dx.doi.org/10.1175/Jcli-D-17-0271.1]
相关作者
相关机构