遥感估算地表蒸散发真实性检验研究进展
Advances in validation of remotely sensed land surface evapotranspiration
- 2020年24卷第8期 页码:975-999
纸质出版日期: 2020-08-07
DOI: 10.11834/jrs.20209099
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-08-07 ,
扫 描 看 全 文
张圆,贾贞贞,刘绍民,徐自为,徐同仁,姚云军,马燕飞,宋立生,李相,胡骁,王泽宇, 郭枝虾, 周纪.2020.遥感估算地表蒸散发真实性检验研究进展.遥感学报,24(8): 975-999
Zhang Y,Jia Z Z,Liu S M,Xu Z W,Xu T R,Yao Y J,Ma Y F,Song L S,Li X,Hu X,Wang Z Y,Guo Z X and Zhou J. 2020. Advances in validation of remotely sensed land surface evapotranspiration. Journal of Remote Sensing(Chinese),24(8): 975-999[DOI:10.11834/jrs.20209099]
地表蒸散发是连接土壤—植被—大气连续体的纽带,结合遥感技术估算地表蒸散发已成为获取区域乃至全球尺度时空连续地表蒸散发量的有效手段。由于遥感估算地表蒸散发容易受到地表空间异质性和近地层气象条件复杂性的影响,在模型机理与变量参数化方案、输入数据和时间尺度扩展等方面存在不确定性,影响了其准确度的提高和应用范围的拓展,因此需要开展真实性检验。本文综述了当前遥感估算地表蒸散发(包括植被蒸腾和土壤蒸发)真实性检验研究的相关成果,重点归纳并总结了应用于遥感估算地表蒸散发真实性检验的直接检验法和间接检法的主要原理、适用性和优缺点,在此基础上阐述了当前遥感估算地表蒸散发真实性检验研究所面临的挑战。分析表明:由于地表空间异质性的普遍存在,遥感估算地表蒸散发真实性检验研究在理论和方法方面还受到诸多挑战,今后应打破地表蒸散发遥感产品真实性检验局限在均匀地表的传统思路,发展非均匀地表遥感估算地表蒸散发真实性检验的理论框架,包括地表水热状况空间异质性的度量、非均匀地表验证场的优化布设、非均匀下垫面地表蒸散发的多尺度观测试验、卫星像元/区域尺度地表蒸散发相对真值的获取、验证过程中的不确定性分析以及遥感估算地表蒸散发的实证研究等,并构建一个多源、多尺度、多方法、多层次的真实性检验技术流程,以期把遥感估算地表蒸散发真实性检验作为突破口,提升相应遥感产品的应用水平,推动定量遥感科学的发展。
Evapotranspiration (ET) is an important component in the soil-vegetation-atmosphere continuum. Remotely Sensed ET (RS-ET) provides multi-scale and spatiotemporally continuous information over the land surface
and has become an effective approach to obtain ET.
Due to the heterogeneity of land surface and complexity of meteorological conditions at the near-surface layer
there exist various uncertainties derived from the model mechanism
parameterization scheme
input data and time scale conversion
which hindered correct estimations of ET
and further effect on its application. Therefore
it is essential to validate RS-ET to optimize the models and improve the associated products. This paper evaluated a group of validation methods for RS-ET (including evaporation and transpiration)
which usually consists of direct validation and indirect validation. An overview of the principles
applicability
advantages
and disadvantages for all the validation methods were summarized. Direct validation is based on in situ measurements (including (micro-) lysimeter
stem sap flow
bowen ratio energy balance system
eddy covariance
and scintillator) to get the ground truth value
which can be used as the primary and reliable method to validate RS-ET and usually employed at the pixel and regional (or basin) scales. In the absence of ground truth ET
indirect validation becomes feasible
which can be classified into (1) cross-validation
(2) Multi-scale validation based on high spatial resolution remote sensing data
and (3) spatiotemporal variation analysis that combines multiple ET impact factors. Nevertheless
there are still a series of theoretical and methodological challenges in the validation of RS-ET
such as the scale mismatch between in situ measurement and remote sensing pixels due to the land surface heterogeneity. It is well-acknowledged that how to get the ground truth value at pixel and regional scales is the core issue of validation.
This study demonstrated that validations of RS-ET products can be not only applied over homogeneous land surface but also heterogeneous surface with further development
which may at least but not limited to quantification of the spatial heterogeneity of land surface hydrothermal conditions
optimization of the experimental sites for validation over heterogeneous land surface
multi-scale measurements of ET on heterogeneous surface
acquisition of ground truth ET at pixel and regional scales
validation demonstration and uncertainty analyses of the validation process. Moreover
this study also proposed a generalized validation framework to validate RS_ET products at different scales (pixel scale and regional scale)
which included direct validation (as the priority method) and indirect validation methods (as the auxiliary method)
multiple validation data (i.e.
ground truth ET at the pixel and regional scale
ET reanalysis data
various ET products
estimated ET from models and ET impact factors). The current framework focused on evaluating the accuracy and the spatiotemporal variations
identifying the error sources of the RS-ET products and analyzing the uncertainties during the validation process. This work is expected to improve the land surface remote sensing products and promote the development of quantitative remote sensing science.
遥感估算地表蒸散发非均匀地表真实性检验直接检验间接检验
remotely sensed evapotranspirationheterogeneous surfacevalidationdirect validationindirect validation
Allen R G, Tasumi M, Morse A, Trezza R, Wright J L, Bastiaanssen W, Kramber W, Lorite I and Robison C W. 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-applications. Journal of irrigation and drainage engineering, 133(4): 395-406 [DOI: 10.1061/http://dx.doi.org/10.1061/
ASCE)0733-9437(2007)133:4(395)]
Allen R G, Pereira L S, Howell T A and Jensen M E. 2011. Evapotranspiration information reporting: I. factors governing measurement accuracy. Agricultural Water Management, 98(6): 899-920 [DOI: 10.1016/j.agwat.2010.12.015http://dx.doi.org/10.1016/j.agwat.2010.12.015]
Anderson M C, Norman J M, Diak G R, Kustas W P and Mecikalski J R. 1997. A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sensing of Environment, 60(2): 195-216 [DOI: 10.1016/S0034-4257(96)00215-5http://dx.doi.org/10.1016/S0034-4257(96)00215-5]
Anderson M C, Norman J M, Mecikalski J R, Torn R D, Kustas W P and Basara J B. 2004. A multiscale remote sensing model for disaggregating regional fluxes to micrometeorological scales. Journal of Hydrometeorology, 5(2): 343-363 [DOI: 10.1175/1525-7541(2004)005<0343:AMRSMF>2.0.CO;2http://dx.doi.org/10.1175/1525-7541(2004)005<0343:AMRSMF>2.0.CO;2]
Anderson M C, Kustas W P, Norman J M, Hain C R, Mecikalski J R, Schultz L, González-Dugo M P, Cammalleri C, d'Urso G, Pimstein A and Gao F. 2010. Mapping daily evapotranspiration at field to global scales using geostationary and polar orbiting satellite imagery, Hydrology and Earth System Sciences Discussions, 7(4): 5957-5990 [DOI: 10.5194/hessd-7-5957-2010http://dx.doi.org/10.5194/hessd-7-5957-2010]
Bai J, Jia L, Liu S M, Xu Z W, Hu G C, Zhu M J and Song L S. 2015. Characterizing the footprint of eddy covariance system and large aperture scintillometer measurements to validate satellite-based surface fluxes. IEEE Geoscience and Remote Sensing Letters, 12(5): 943-947 [DOI: 10.1109/LGRS.2014.2368580http://dx.doi.org/10.1109/LGRS.2014.2368580]
Baret F, Weiss M, Allard D, Garrigues S, Leroy M, Jeanjean H, Fernandes R, Myneni R B, Privette J, Morisette J, Bohbot H, Bosseno R, Dedieu G, Di Bella C, Duchemin B, Espana M, Gond V, Gu X F, Guyon D, Lelong C, Maisongrande P, Mougin E, Nilson T, Veroustraete E and Vintilla R. 2005. VALERI: a network of sites and a methodology for the validation of medium spatial resolution land satellite products. Remote Sensing of Environment. [2013 – 08 - 12] http://www.journals.elsevier.com/remote-sensing-of-enviroment.
Bastiaanssen W G M, Menenti M, Feddes R A and Holtslag A A M. 1998. A remote sensing surface energy balance algorithm for land (SEBAL). 1. formulation. Journal of Hydrology, 212-213: 198-212 [DOI: 10.1016/S0022-1694(98)00253-4http://dx.doi.org/10.1016/S0022-1694(98)00253-4]
Bodesheim P, Jung M, Gans F, Mahecha M D and Reichstein M. 2018. Upscaled diurnal cycles of land-atmosphere fluxes: a new global half-hourly data product. Earth System Science Data, 10(3): 1327-1365 [DOI: 10.5194/essd-10-1327-2018http://dx.doi.org/10.5194/essd-10-1327-2018]
Brunsell N A, Ham J M and Arnold K A. 2011. Validating remotely sensed land surface fluxes in heterogeneous terrain with large aperture scintillometry. International Journal of Remote Sensing, 32(21): 6295-6314 [DOI: 10.1080/01431161.2010.508058http://dx.doi.org/10.1080/01431161.2010.508058]
Chávez J L, Neale C M U, Hipps L E, Prueger J H and Kustas W P. 2005. Comparing aircraft-based remotely sensed energy balance fluxes with eddy covariance tower data using heat flux source area functions. Journal of Hydrometeorology, 6(6): 923-940 [DOI: 10.1175/JHM467.1http://dx.doi.org/10.1175/JHM467.1]
Chen P and Zabaras N. 2014. Uncertainty quantification for multiscale disk forging of polycrystal materials using probabilistic graphical model techniques. Computational Materials Science, 84: 278-292 [DOI: 10.1016/j.commatsci.2013.12.004http://dx.doi.org/10.1016/j.commatsci.2013.12.004]
Chen X, Su Z, Ma Y, Liu S, Yu Q and Xu Z. 2014. Development of a 10-year (2001-2010) 0.1° data set of land-surface energy balance for mainland China. Atmospheric Chemistry and Physics, 14(23): 13097-13117 [DOI: 10.5194/acp-14-13097-2014http://dx.doi.org/10.5194/acp-14-13097-2014]
Chen Y, Yuan W P, Xia J Z, Fisher J B, Dong W J, Zhang X T, Liang S L, Ye A Z, Cai W W and Feng J M. 2015. Using Bayesian model averaging to estimate terrestrial evapotranspiration in China. Journal of Hydrology, 528: 537-549 [DOI: 10.1016/j.jhydrol.2015.06.059http://dx.doi.org/10.1016/j.jhydrol.2015.06.059]
Colaizzi P D, Kustas W P, Anderson M C, Agam N, Tolk J A, Evett S R, Howell T A, Gowda P H and O’Shaughnessy S A. 2012. Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures. Advances in Water Resources, 50: 134-151 [DOI: 10.1016/j.advwatres.2012.06.004http://dx.doi.org/10.1016/j.advwatres.2012.06.004]
Deman G, Konakli K, Sudret B, Kerrou J, Perrochet P and Benabderrahmane H. 2016. Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model. Reliability Engineering and System Safety, 147: 156-169 [DOI: 10.1016/j.ress.2015.11.005http://dx.doi.org/10.1016/j.ress.2015.11.005]
Ershadi A, McCabe M F, Evans J P, Chaney N W and Wood E F. 2014. Multi-site evaluation of terrestrial evaporation models using FLUXNET data. Agricultural and Forest Meteorology, 187: 46-61 [DOI: 10.1016/j.agrformet.2013.11.008http://dx.doi.org/10.1016/j.agrformet.2013.11.008]
Ershadi A, McCabe M F, Evans J P and Wood E F. 2015. Impact of model structure and parameterization on Penman–Monteith type evaporation models. Journal of Hydrology, 525: 521-535 [DOI: 10.1016/j.jhydrol.2015.04.008http://dx.doi.org/10.1016/j.jhydrol.2015.04.008]
Fisher J B, Tu K P and Baldocchi D D. 2008. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sensing of Environment, 112(3): 901-919 [DOI: 10.1016/j.rse.2007.06.025http://dx.doi.org/10.1016/j.rse.2007.06.025]
Fisher J B, Melton F, Middleton E, Hain C, Anderson M, Allen R, McCabe M F, Hook S, Baldocchi D, Townsend P A, Kilic A, Tu K, Miralles D D, Perret J, Lagouarde J P, Waliser D, Purdy A J, French A, Schimel D, Famiglietti J S, Stephens G and Wood E F. 2017. The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resources Research, 53(4): 2618-2626 [DOI: 10.1002/2016WR020175http://dx.doi.org/10.1002/2016WR020175]
French A N, Jacob F, Anderson M C, Kustas W P, Timmermans W, Gieske A, Su Z, Su H, McCabe M F, Li F, Prueger J and Brunsell N. 2005. Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA). Remote Sensing of Environment, 99(1/2): 55-65 [DOI: 10.1016/j.rse.2005.05.015http://dx.doi.org/10.1016/j.rse.2005.05.015]
Gao B, Qin Y, Wang Y H, Yang D W and Zheng Y R. 2016. Modeling ecohydrological processes and spatial patterns in the upper Heihe Basin in China. Forests, 7(1): 10 [DOI: 10.3390/f7010010http://dx.doi.org/10.3390/f7010010]
Ge Y, Liang Y Z, Wang J H, Zhao Q Y and Liu S M. 2015. Upscaling sensible heat fluxes with area-to-area regression kriging. IEEE Geoscience and Remote Sensing Letters, 12(3): 656-660 [DOI: 10.1109/LGRS.2014.2355871http://dx.doi.org/10.1109/LGRS.2014.2355871]
Ge Y, Jin Y, Stein A, Chen Y H, Wang J H, Wang J F, Cheng Q M, Bai H X, Liu M X and Atkinson P M. 2019. Principles and methods of scaling geospatial Earth science data. Earth-Science Reviews, 197: 102897 [DOI: 10.1016/j.earscirev.2019.102897http://dx.doi.org/10.1016/j.earscirev.2019.102897]
Ghilain N, Arboleda A, Sepulcre-Cantò G, Batelaan O, Ardö J and Gellens-Meulenberghs F. 2012. Improving evapotranspiration in a land surface model using biophysical variables derived from MSG/SEVIRI satellite. Hydrology and Earth System Sciences, 16(8): 2567-2583 [DOI: 10.5194/hess-16-2567-2012http://dx.doi.org/10.5194/hess-16-2567-2012]
Gong W and Yang D W. 2013. High-dimensional nonlinear correlation analysis of hydrological variables and model structure uncertainty qualification. Journal of Hydroelectric Engineering, 32(5): 13-20
龚伟, 杨大文. 2013. 水文变量高维非线性相关分析与水文模型结构不确定性评估. 水力发电学报, 32(5): 13-20
Granier A, Biron P, Köstner B, Gay L W and Najjar G. 1996. Comparisons of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance for Scots pine. Theoretical and Applied Climatology, 53(1/3): 115-122 [DOI: 10.1007/BF00866416http://dx.doi.org/10.1007/BF00866416]
Hao D L, Xiao Q, Wen J G, You D Q, Wu X D, Lin X Y and Wu S B. 2018. Advances in upscaling methods of quantitative remote sensing. Journal of Remote Sensing, 22(3): 408-423
郝大磊, 肖青, 闻建光, 游冬琴, 吴小丹, 林兴稳, 吴胜标. 2018. 定量遥感升尺度转换方法研究进展. 遥感学报, 22(3): 408-423 [DOI: 10.11834/jrs.20187070http://dx.doi.org/10.11834/jrs.20187070]
Hemakumara H M, Chandrapala L and Moene A F. 2003. Evapotranspiration fluxes over mixed vegetation areas measured from large aperture scintillometer. Agricultural Water Management, 58(2): 109-122 [DOI: 10.1016/S0378-3774(02)00131-2http://dx.doi.org/10.1016/S0378-3774(02)00131-2]
Hu G C and Jia L. 2015. Monitoring of evapotranspiration in a semi-arid inland river basin by combining microwave and optical remote sensing observations. Remote Sensing, 7(3): 3056-3087 [DOI: 10.3390/rs70303056http://dx.doi.org/10.3390/rs70303056]
Hu G C, Jia L and Menenti M. 2015. Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over Europe for 2011. Remote Sensing of Environment, 156: 510-526 [DOI: 10.1016/j.rse.2014.10.017http://dx.doi.org/10.1016/j.rse.2014.10.017]
Jia L, Su Z B, van den Hurk B, Menenti M, Moene A, De Bruin H A R, Yrisarry J J B, Ibanez M and Cuesta A. 2003. Estimation of sensible heat flux using the Surface Energy Balance System (SEBS) and ATSR measurements. Physics and Chemistry of the Earth, Parts A/B/C, 28(1/3): 75-88 [DOI: 10.1016/s1474-7065(03)00009-3http://dx.doi.org/10.1016/s1474-7065(03)00009-3]
Jia Z Z, Liu S M, Xu Z W, Chen Y J and Zhu M J. 2012. Validation of remotely sensed evapotranspiration over the Hai River Basin, China. Journal of Geophysical Research: Atmospheres, 117(D13): D13113 [DOI: 10.1029/2011jd017037http://dx.doi.org/10.1029/2011jd017037]
Jiang C Y and Ryu Y. 2016. Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator (BESS). Remote Sensing of Environment, 186: 528-547 [DOI: 10.1016/j.rse.2016.08.030http://dx.doi.org/10.1016/j.rse.2016.08.030]
Jiang X G, Li Z L, Li X B and Li Z Y. 2008. Basic frame of remote sensing validation system. Arid Land Geography, 31(4): 567-571
姜小光, 李召良, 李显彬, 李子扬. 2008. 遥感真实性检验系统框架初步构想. 干旱区地理, 31(4): 567-571 [DOI: 10.13826/j.cnki.cn65-1103/x.2008.04.023http://dx.doi.org/10.13826/j.cnki.cn65-1103/x.2008.04.023]
Jiang Y Y, Wang W and Zhou Z H. 2017. Evaluation of MODIS MOD16 evaportranspiration product in Chinese river basins. Journal of Natural Resources, 32(3): 517-528
姜艳阳, 王文, 周正昊. 2017. MODIS MOD16蒸散发产品在中国流域的质量评估. 自然资源学报, 32(3): 517-528 [DOI: 10.11849/zrzyxb.20160440http://dx.doi.org/10.11849/zrzyxb.20160440]
Jiménez C, Prigent C, Mueller B, Seneviratne S I, McCabe M F, Wood E F, Rossow W B, Balsamo G, Betts A K, Dirmeyer P A, Fisher J B, Jung M, Kanamitsu M, Reichle R H, Reichstein M, Rodell M, Sheffield J, Tu K and Wang K. 2011. Global intercomparison of 12 land surface heat flux estimates. Journal of Geophysical Research: Atmospheres, 116(D2): D02102 [DOI: 10.1029/2010j d014545http://dx.doi.org/10.1029/2010jd014545]
Jiménez C, Martens B, Miralles D M, Fisher J B, Beck H E and Fernández-Prieto D. 2018. Exploring the merging of the global land evaporation WACMOS-ET products based on local tower measurements. Hydrology and Earth System Sciences, 22(8): 4513-4533 [DOI: 10.5194/hess-22-4513-2018http://dx.doi.org/10.5194/hess-22-4513-2018]
Jin R, Li X, Ma M G, Ge Y, Liu S M, Xiao Q, Wen J G, Zhao K, Xin X P, Ran Y H, Liu Q H and Zhang R H. 2017. Key methods and experiment verification for the validation of quantitative remote sensing products. Advances in Earth Science, 32(6): 630-642
晋锐, 李新, 马明国, 葛咏, 刘绍民, 肖青, 闻建光, 赵凯, 辛晓平, 冉有华, 柳钦火, 张仁华. 2017. 陆地定量遥感产品的真实性检验关键技术与试验验证. 地球科学进展, 32(6): 630-642 [DOI: 10.11867/j.issn.1001-8166.2017.06.0630http://dx.doi.org/10.11867/j.issn.1001-8166.2017.06.0630]
Jung M, Reichstein M and Bondeau A. 2009. Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6(10): 2001-2013 [DOI: 10.5194/bg-6-2001-2009http://dx.doi.org/10.5194/bg-6-2001-2009]
Jung M, Reichstein M, Margolis H A, Cescatti A, Richardson A D, Arain M A, Arneth A, Bernhofer C, Bonal D, Chen J Q, Gianelle D, Gobron N, Kiely G, Kutsch W, Lasslop G, Law B E, Lindroth A, Merbold L, Montagnani L, Moors E J, Papale D, Sottocornola M, Vaccari F and Williams C. 2011. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research: Biogeosciences, 116(G3): G00J07 [DOI: 10.1029/2010jg001566http://dx.doi.org/10.1029/2010jg001566]
Jung M, Koirala S, Weber U, Ichii K, Gans F, Camps-Valls G, Papale D, Schwalm C, Tramontana G and Reichstein M. 2019. The FLUXCOM ensemble of global land-atmosphere energy fluxes. Scientific Data, 6: 74 [DOI: 10.1038/s41597-019-0076-8http://dx.doi.org/10.1038/s41597-019-0076-8]
Justice C, Belward A, Morisette J, Lewis P, Privette J and Baret F. 2000. Developments in the validation of satellite sensor products for the study of the land surface. International Journal of Remote Sensing, 21(17): 3383-3390 [DOI: 10.1080/0143116007500 20000http://dx.doi.org/10.1080/014311600750020000]
Kalma J D, McVicar T R and McCabe M F. 2008. Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data. Surveys in Geophysics, 29(4/5): 421-469 [DOI: 10.1007/s10712-008-9037-zhttp://dx.doi.org/10.1007/s10712-008-9037-z]
Khan M S, Liaqat U W, Baik J and Choi M. 2018. Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach. Agricultural and Forest Meteorology, 252: 256-268 [DOI: 10.1016/j.agrformet.2018.01.022http://dx.doi.org/10.1016/j.agrformet.2018.01.022]
Kustas W P and Norman J M. 1996. Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrological Sciences Journal, 41(4): 495-516 [DOI: 10.1080/02626669609491522http://dx.doi.org/10.1080/02626669609491522]
Li X, Li X W, Li Z Y, Ma M G, Wang J, Xiao Q, Liu Q, Che T, Chen E X, Yan G J, Hu Z Y, Zhang L X, Chu R Z, Su P X, Liu Q H, Liu S M, Wang J D, Niu Z, Chen Y, Jin R, Wang W Z, Ran Y H, Xin X Z and Ren H Z. 2009a. Watershed allied telemetry experimental research. Journal of Geophysical Research: Atmospheres, 114(D22): D22103 [DOI: 10.1029/2008JD011590http://dx.doi.org/10.1029/2008JD011590]
Li X, Cheng G D, Liu S M, Xiao Q, Ma M G, Jin R, Che T, Liu Q H, Wang W Z, Qi Y, Wen J G, Li H Y, Zhu G F, Guo J W, Ran Y H, Wang S G, Zhu Z L, Zhou J, Hu X L and Xu Z W. 2013. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): scientific objectives and experimental design. Bulletin of the American Meteorological Society, 94(8): 1145-1160 [DOI: 10.1175/BAMS-D-12-00154.1http://dx.doi.org/10.1175/BAMS-D-12-00154.1]
Li X, Jin R, Liu S M, Ge Y, Xiao Q, Liu Q H, Ma M G and Ran Y H. 2016. Upscaling research in HiWATER: progress and prospects. Journal of Remote Sensing, 20(5): 921-932
李新, 晋锐, 刘绍民, 葛咏, 肖青, 柳钦火, 马明国, 冉有华. 2016. 黑河遥感试验中尺度上推研究的进展与前瞻. 遥感学报, 20(5): 921-932 [DOI: 10.11834/jrs.20166241http://dx.doi.org/10.11834/jrs.20166241]
Li X, Liu S M, Li H X, Ma Y F, Wang J H, Zhang Y, Xu Z W, Xu T R, Song L S, Yang X F, Lu Z, Wang Z Y and Guo Z X. 2018. Intercomparison of six upscaling evapotranspiration methods: from site to the satellite pixel. Journal of Geophysical Research: Atmospheres, 123(13): 6777-6803 [DOI: 10.1029/2018JD028422http://dx.doi.org/10.1029/2018JD028422]
Li X Y, Long D, Han Z Y, Scanlon B R, Sun Z L, Han P F and Hou A Z. 2019. Evapotranspiration estimation for Tibetan Plateau headwaters using conjoint terrestrial and atmospheric water balances and multisource remote sensing. Water Resources Research, 55(11): 8608-8630 [DOI: 10.1029/2019WR025196http://dx.doi.org/10.1029/2019WR025196]
Li Z L, Shao Q X, Xu Z X and Cai X T. 2010. Analysis of parameter uncertainty in semi-distributed hydrological models using bootstrap method: a case study of SWAT model applied to Yingluoxia watershed in northwest China. Journal of Hydrology, 385(1/4): 76-83 [DOI: 10.1016/j.jhydrol.2010.01.025http://dx.doi.org/10.1016/j.jhydrol.2010.01.025]
Li Z L, Tang R L, Wan Z M, Bi Y Y, Zhou C H, Tang B H, Yan G J and Zhang X Y. 2009b. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors, 9(5): 3801-3853 [DOI: 10.3390/s90503801http://dx.doi.org/10.3390/s90503801]
Liu Q H, Li X W and Chen L F. 2002. Field campaign for quantitative remote sensing in Beijing//IEEE International Geoscience and Remote Sensing Symposium. Toronto, Ontario, Canada: IEEE, 6: 3133-3135 [DOI: 10.1109/IGARSS.2002.1027109http://dx.doi.org/10.1109/IGARSS.2002.1027109]
Liu S M, Sun R, Sun Z P, Li X W and Liu C M. 2006. Evaluation of three complementary relationship approaches for evapotranspiration over the Yellow River basin. Hydrological Processes, 20(11): 2347-2361 [DOI: 10.1002/hyp.6048http://dx.doi.org/10.1002/hyp.6048]
Liu S M, Bai J, Jia Z Z, Jia L, Zhou H and Lu L. 2010. Estimation of evapotranspiration in the Mu Us Sandland of China. Hydrology and Earth System Sciences, 14(3): 573-584 [DOI: 10.5194/hess-14-573-2010http://dx.doi.org/10.5194/hess-14-573-2010]
Liu S M, Xu Z W, Wang W Z, Jia Z Z, Zhu M J, Bai J and Wang J M. 2011. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrology and Earth System Sciences, 15(4): 1291-1306 [DOI: 10.5194/hess-15-1291-2011http://dx.doi.org/10.5194/hess-15-1291-2011]
Liu S M, Xu Z W, Zhu Z L, Jia Z Z and Zhu M J. 2013. Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. Journal of Hydrology, 487: 24-38 [DOI: 10.1016/j.jhydrol.2013.02.025http://dx.doi.org/10.1016/j.jhydrol.2013.02.025]
Liu S M, Xu Z W, Song L S, Zhao Q Y, Ge Y, Xu T R, Ma Y F, Zhu Z L, Jia Z Z and Zhang F. 2016a. Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agricultural and Forest Meteorology, 230-231: 97-113 [DOI: 10.1016/j.agrformet.2016.04.008http://dx.doi.org/10.1016/j.agrformet.2016.04.008]
Liu S M, Xu Z W, Song L S, Zhang Y and Zhu Z L. 2016b. A framework for validating remotely sensed evapotranspiration//2016 IEEE International Geoscience and Remote Sensing Symposium. Beijing: IEEE: 3485-3488 [DOI: 10.1109/IGARSS.2016.7729901http://dx.doi.org/10.1109/IGARSS.2016.7729901]
Liu S M, Li X, Xu Z W, Che T, Xiao Q, Ma M G, Liu Q H, Jin R, Guo J W, Wang L X, Wang W Z, Qi Y, Li H Y, Xu T R, Ran Y H, Hu X L, Shi S J, Zhu Z L, Tan J L, Zhang Y and Ren Z G. 2018. The heihe integrated observatory network: a basin-scale land surface processes observatory in China. Vadose Zone Journal, 17(1): 1-21 [DOI: 10.2136/vzj2018.04.0072http://dx.doi.org/10.2136/vzj2018.04.0072]
Liu S M and Xu Z W. 2018. Micrometeorological methods to determine evapotranspiration//Li X and Vereecken H, eds. Observation and Measurement of Ecohydrological Processes. Berlin, Heidelberg: Springer: 1-39 [DOI: 10.1007/978-3-662-48297-1_7-3http://dx.doi.org/10.1007/978-3-662-48297-1_7-3]
Loew A, Bell W, Brocca L, Bulgin C E, Burdanowitz J, Calbet X, Donner R V, Ghent D, Gruber A, Kaminski T, Kinzel J, Klepp C, Lambert J C, Schaepman-Strub G, Schröder M and Verhoelst T. 2017. Validation practices for satellite-based earth observation data across communities. Reviews of Geophysics, 55(3): 779-817 [DOI: 10.1002/2017rg000562http://dx.doi.org/10.1002/2017rg000562]
Long D, Longuevergne L and Scanlon B R. 2014. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resources Research, 50(2): 1131-1151 [DOI: 10.1002/2013wr014581http://dx.doi.org/10.1002/2013wr014581]
Ma M G, Che T, Li X, Xiao Q, Zhao K and Xin X P. 2015a. A prototype network for remote sensing validation in China. Remote Sensing, 7(5): 5187-5202 [DOI: 10.3390/rs70505187http://dx.doi.org/10.3390/rs70505187]
Ma N, Szilagyi J, Zhang Y S and Liu W B. 2019. Complementary‐relationship‐based modeling of terrestrial evapotranspiration across China during 1982-2012: validations and spatiotemporal analyses. Journal of Geophysical Research: Atmospheres, 124(8): 4326-4351 [DOI: 10.1029/2018JD029850http://dx.doi.org/10.1029/2018JD029850]
Ma Y F, Liu S M, Song L S, Xu Z W, Liu Y L, Xu T R and Zhu Z J. 2018. Estimation of daily evapotranspiration and irrigation water efficiency at a Landsat-like scale for an arid irrigation area using multi-source remote sensing data. Remote Sensing of Environment, 216: 715-734 [DOI: 10.1016/j.rse.2018.07.019http://dx.doi.org/10.1016/j.rse.2018.07.019]
Ma Y F, Liu S M, Zhang F, Zhou J, Jia Z Z and Song L S. 2015b. Estimations of regional surface energy fluxes over heterogeneous oasis–desert surfaces in the middle reaches of the Heihe River during HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12(3): 671-675 [DOI: 10.1109/LGRS.2014.2356652http://dx.doi.org/10.1109/LGRS.2014.2356652]
Martens B, Miralles D G, Lievens H, van der Schalie R, de Jeu R A M, Fernández-Prieto D, Beck H E, Dorigo W A and Verhoest N E C. 2017. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development, 10(5): 1903-1925 [DOI: 10.5194/gmd-10-1903-2017http://dx.doi.org/10.5194/gmd-10-1903-2017]
Marx A, Kunstmann H, Schüttemeyer D and Moene A F. 2008. Uncertainty analysis for satellite derived sensible heat fluxes and scintillometer measurements over Savannah environment and comparison to mesoscale meteorological simulation results. Agricultural and Forest Meteorology, 148(4): 656-667 [DOI: 10.1016/j.agrformet.2007.11.009http://dx.doi.org/10.1016/j.agrformet.2007.11.009]
McCabe M F, Ershadi A, Jimenez C, Miralles D G, Michel D and Wood E F. 2015. The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally-gridded forcing data. Geoscientific Model Development Discussions, 8(8): 6809-6866 [DOI: 10.5194/gmdd-8-6809-2015http://dx.doi.org/10.5194/gmdd-8-6809-2015]
McCabe M F, Ershadi A, Jimenez C, Miralles D G, Michel D and Wood E F. 2016. The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data. Geoscientific Model Development, 9(1): 283-305 [DOI: 10.5194/gmd-9-283-2016http://dx.doi.org/10.5194/gmd-9-283-2016]
Michel D, Jiménez C, Miralles D G, Jung M, Hirschi M, Ershadi A, Martens B, McCabe M F, Fisher J B, Mu Q, Seneviratne S I, Wood E F, Fernández-Prieto D. 2016. The WACMOS-ET project–Part 1: tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms. Hydrology and Earth System Sciences, 20(2): 803-822 [DOI: 10.5194/hess-20-803-2016http://dx.doi.org/10.5194/hess-20-803-2016]
Minh L Q, Duong P L T and Lee M. 2018. Global sensitivity analysis and uncertainty quantification of crude distillation unit using surrogate model based on gaussian process regression. Industrial and Engineering Chemistry Research, 57(14): 5035-5044 [DOI: 10.1021/acs.iecr.7b05173http://dx.doi.org/10.1021/acs.iecr.7b05173]
Miralles D G, Holmes T R H, De Jeu R A M, Gash J H, Meesters A G C A and Dolman A J. 2011. Global land-surface evaporation estimated from satellite-based observations. Hydrology and Earth System Sciences, 15(2): 453-469 [DOI: 10.5194/hess-15-453-2011http://dx.doi.org/10.5194/hess-15-453-2011]
Miralles D G, Jiménez C, Jung M, Michel D, Ershadi A, McCabe M F, Hirschi M, Martens B, Dolman A J, Fisher J B, Mu Q, Seneviratne S I, Wood E F and Fernández-Prieto D. 2016. The WACMOS-ET project-Part 2: evaluation of global terrestrial evaporation data sets. Hydrology and Earth System Sciences, 20(2): 823-842 [DOI: 10.5194/hess-20-823-2016http://dx.doi.org/10.5194/hess-20-823-2016]
Morisette J T, Baret F, Privette J L, Myneni R B, Nickeson J E, Garrigues S, Shabanov N V, Weiss M, Fernandes R A, Leblanc S G, Kalacska M, Sanchez-Azofeifa G A, Chubey M, Rivard B, Stenberg P, Rautiainen M, Voipio P, Manninen T, Pilant A N, Lewis T E, Iiames J S, Colombo R, Meroni M, Busetto L, Cohen W B, Turner D P, Warner E D, Petersen G W, Seufert G and Cook R. 2006. Validation of global moderate-resolution LAI products: a framework proposed within the CEOS land product validation subgroup. IEEE Transactions on Geoscience and Remote Sensing, 44(7): 1804-1817 [DOI: 10.1109/TGRS.2006.872529http://dx.doi.org/10.1109/TGRS.2006.872529]
Mu Q Z, Heinsch F A, Zhao M S and Running S W. 2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 111(4): 519-536 [DOI: 10.1016/j.rse.2007.04.015http://dx.doi.org/10.1016/j.rse.2007.04.015]
Mu Q Z, Zhao M S and Running S W. 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115(8): 1781-1800 [DOI: 10.1016/j.rse.2011.02.019http://dx.doi.org/10.1016/j.rse.2011.02.019]
Mueller B, Seneviratne S I, Jimenez C, Corti T, Hirschi M, Balsamo G, Ciais P, Dirmeyer P, Fisher J B, Guo Z, Jung M, Maignan F, McCabe M F, Reichle R, Reichstein M, Rodell M, Sheffield J, Teuling A J, Wang K, Wood E F and Zhang Y. 2011. Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophysical Research Letters, 38(6): L06402 [DOI: 10.1029/2010gl046230http://dx.doi.org/10.1029/2010gl046230]
Norman J M, Kustas W P and Humes K S. 1995. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology, 77(3/4): 263-293 [DOI: 10.1016/0168-1923(95)02265-Yhttp://dx.doi.org/10.1016/0168-1923(95)02265-Y]
Norman J M, Kustas W P, Prueger J H and Diak G R. 2000. Surface flux estimation using radiometric temperature: a dual-temperature-difference method to minimize measurement errors. Water Resources Research, 36(8): 2263-2274 [DOI: 10.1029/2000wr900033http://dx.doi.org/10.1029/2000wr900033]
Norman J M, Anderson M C, Kustas W P, French A N, Mecikalski J, Torn R, Diak G R, Schmugge T J and Tanner B C W. 2003. Remote sensing of surface energy fluxes at 101-m pixel resolutions. Water Resources Research, 39(8): 1221 [DOI: 10.1029/2002 wr001775http://dx.doi.org/10.1029/2002wr001775]
Qi W, Zhang C, Fu G T, Sweetapple C and Zhou H C. 2015. Evaluation of global fine-resolution precipitation products and their uncertainty quantification in ensemble discharge simulations. Hydrology and Earth System Sciences Discussions, 12(9): 9337-9391 [DOI: 10.5194/hessd-12-9337-2015http://dx.doi.org/10.5194/hessd-12-9337-2015]
Running S W, Baldocchi D D, Turner D P, Gower S T, Bakwin P S and Hibbard K A. 1999. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sensing of Environment, 70(1): 108-127 [DOI: 10.1016/S0034-4257(99)00061-9http://dx.doi.org/10.1016/S0034-4257(99)00061-9]
Ryu Y, Baldocchi D D, Kobayashi H, van Ingen C, Li J, Black T A, Beringer J, van Gorsel E, Knohl A, Law B E and Roupsard O. 2011. Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales. Global Biogeochemical Cycles, 25(4):
GB4017 [DOI: 10.1029/2011gb004053http://dx.doi.org/10.1029/2011gb004053]
Senay G B, Bohms S, Singh R K, Gowda P H, Velpuri N M, Alemu H and Verdin J P. 2013. Operational evapotranspiration mapping using remote sensing and weather datasets: a new parameterization for the SSEB approach. Journal of the American Water Resources Association, 49(3): 577-591 [DOI: 10.1111/jawr.12057http://dx.doi.org/10.1111/jawr.12057]
Shuttleworth W J and Wallace J S. 1985. Evaporation from sparse crops‐an energy combination theory. Quarterly Journal of the Royal Meteorological Society, 111(469): 839-855 [DOI: 10.1002/qj.49711146910http://dx.doi.org/10.1002/qj.49711146910]
Song L S, Kustas W P, Liu S M, Colaizzi P D, Nieto H, Xu Z W, Ma Y F, Li M S, Xu T R, Agam N, Tolk J A and Evett S R. 2016a. Applications of a thermal-based two-source energy balance model using Priestley-Taylor approach for surface temperature partitioning under advective conditions. Journal of Hydrology, 540: 574-587 [DOI: 10.1016/j.jhydrol.2016.06.034http://dx.doi.org/10.1016/j.jhydrol.2016.06.034]
Song L S, Liu S M, Kustas W P, Zhou J, Xu Z W, Xia T and Li M S. 2016b. Application of remote sensing-based two-source energy balance model for mapping field surface fluxes with composite and component surface temperatures. Agricultural and Forest Meteorology, 230-231: 8-19 [DOI: 10.1016/j.agrformet.2016.01.005http://dx.doi.org/10.1016/j.agrformet.2016.01.005]
Song L S, Liu S M, Xu T R, Xu Z W and Ma Y F. 2017. Soil evaporation and vegetation transpiration: remotely sensed estimation and validation. Journal of Remote Sensing, 21(6): 966-981
宋立生, 刘绍民, 徐同仁, 徐自为, 马燕飞. 2017. 土壤蒸发和植被蒸腾遥感估算与验证. 遥感学报, 21(6): 966-981 [DOI: 10.11834/jrs.20176391http://dx.doi.org/10.11834/jrs.20176391]
Song L S, Liu S M, Kustas W P, Nieto H, Sun L, Xu Z W, Skaggs T H, Yang Y, Ma M G, Xu T R, Tang X G and Li Q P. 2018. Monitoring and validating spatially and temporally continuous daily evaporation and transpiration at river basin scale. Remote Sensing of Environment, 219: 72-88 [DOI: 10.1016/j.rse.2018.10.002http://dx.doi.org/10.1016/j.rse.2018.10.002]
Song L S, Bian Z J, Kustas W P, Liu S M, Xiao Q, Nieto H, Xu Z W, Yang Y, Xu T R and Han X J. 2020. Estimation of surface heat fluxes using multi-angular observations of radiative surface temperature. Remote Sensing of Environment, 239: 111674 [DOI: 10.1016/j.rse.2020.111674http://dx.doi.org/10.1016/j.rse.2020.111674]
Su H, McCabe M F, Wood E F, Su Z and Prueger J H. 2005. Modeling evapotranspiration during SMACEX: comparing two approaches for local-and regional-scale prediction. Journal of Hydrometeorology, 6(6): 910-922 [DOI: 10.1175/JHM466.1http://dx.doi.org/10.1175/JHM466.1]
Su Z. 2002. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1): 85-100 [DOI: 10.5194/hess-6-85-2002http://dx.doi.org/10.5194/hess-6-85-2002]
Tian Y, Zheng Y, Zheng C M, Xiao H L, Fan W J, Zou S B, Wu B, Yao Y Y, Zhang A J and Liu J. 2015. Exploring scale‐dependent ecohydrological responses in a large endorheic river basin through integrated surface water‐groundwater modeling. Water Resources Research, 51(6): 4065-4085 [DOI: 10.1002/2015WR016881http://dx.doi.org/10.1002/2015WR016881]
Timmermans W J, Kustas W P, Anderson M C and French A N. 2007. An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes. Remote Sensing of Environment, 108(4): 369-384 [DOI: 10.1016/j.rse.2006.11.028http://dx.doi.org/10.1016/j.rse.2006.11.028]
Trambauer P, Dutra E, Maskey S, Werner M, Pappenberger F, van Beek L P H and Uhlenbrook S. 2014. Comparison of different evaporation estimates over the African continent. Hydrology and Earth System Sciences, 18(1): 193-212 [DOI: 10.5194/hess-18-193-2014http://dx.doi.org/10.5194/hess-18-193-2014]
Velpuri N M, Senay G B, Singh R K, Bohms S and Verdin J P. 2013. A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: using point and gridded FLUXNET and water balance ET. Remote Sensing of Environment, 139: 35-49 [DOI: 10.1016/j.rse.2013.07.013http://dx.doi.org/10.1016/j.rse.2013.07.013]
Venturini V, Islam S and Rodriguez L. 2008. Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model. Remote Sensing of Environment, 112(1): 132-141 [DOI: 10.1016/j.rse.2007.04.014http://dx.doi.org/10.1016/j.rse.2007.04.014]
Vinukollu R K, Wood E F, Ferguson C R and Fisher J B. 2011a. Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: evaluation of three process-based approaches. Remote Sensing of Environment, 115(3): 801-823 [DOI: 10.1016/j.rse.2010.11.006http://dx.doi.org/10.1016/j.rse.2010.11.006]
Vinukollu R K, Meynadier R, Sheffield J and Wood E F. 2011b. Multi-model, multi-sensor estimates of global evapotranspiration: climatology, uncertainties and trends. Hydrological Processes, 25(26): 3993-4010 [DOI: 10.1002/hyp.8393http://dx.doi.org/10.1002/hyp.8393]
Wang J and Currit N. 2011. Uncertainty with the scaling-up of remotely sensed evapotranspiration estimation//Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Querying and Mining Uncertain Spatio-Temporal Data. Chicago: ACM: 3-7 [DOI: 10.1145/2064969.2064970http://dx.doi.org/10.1145/2064969.2064970]
Wang K C, Dickinson R E, Wild M and Liang S L. 2010. Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 1. model development. Journal of Geophysical Research: Atmospheres, 115(D20): D20112 [DOI: 10.1029/2009jd013671http://dx.doi.org/10.1029/2009jd013671]
Wang K C and Dickinson R E. 2012. A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability. Reviews of Geophysics, 50(2):
RG2005 [DOI: 10.1029/2011rg000373http://dx.doi.org/10.1029/2011rg000373]
Wang S G, Li X, Ge Y, Jin R, Ma M G, Liu Q H, Wen J G and Liu S M. 2016. Validation of regional-scale remote sensing products in China: from site to network. Remote Sensing, 8(12): 980 [DOI: 10.3390/rs8120980http://dx.doi.org/10.3390/rs8120980]
Wang W G, Shao Q X, Peng S Z, Xing W Q, Yang T, Luo Y F, Yong B and Xu J Z. 2012. Reference evapotranspiration change and the causes across the Yellow River Basin during 1957-2008 and their spatial and seasonal differences. Water Resources Research, 48(5): W05530 [DOI: 10.1029/2011WR010724http://dx.doi.org/10.1029/2011WR010724]
Ward H C, Evans J G, Hartogensis O K, Moene A F, De Bruin H A R and Grimmond C S B. 2013. A critical revision of the estimation of the latent heat flux from two‐wavelength scintillometry. Quarterly Journal of the Royal Meteorological Society, 139(676): 1912-1922 [DOI: 10.1002/qj.2076http://dx.doi.org/10.1002/qj.2076]
Wu B F, Yan N N, Xiong J, Bastiaanssen W G M, Zhu W W and Stein A. 2012. Validation of ETWatch using field measurements at diverse landscapes: a case study in Hai Basin of China. Journal of Hydrology, 436-437: 67-80 [DOI: 10.1016/j.jhydrol.2012.02.043http://dx.doi.org/10.1016/j.jhydrol.2012.02.043]
Wu X D, Xiao Q, Wen J G, Liu Q, Peng J J and Li X W. 2014. Advances in uncertainty analysis for the validation of remote sensing products: take leaf area index for example. Journal of Remote Sensing, 18(5): 1011-1023
吴小丹, 肖青, 闻建光, 刘强, 彭菁菁, 李小文. 2014. 遥感数据产品真实性检验不确定性分析研究进展. 遥感学报, 18(5): 1011-1023 [DOI: 10.11834/jrs.20143332http://dx.doi.org/10.11834/jrs.20143332]
Wu X D, Wen J G, Xiao Q, Li X, Liu Q, Tang Y, Dou B C, Peng J J, You D Q and Li X W. 2015. Advances in validation methods for remote sensing products of land surface parameters. Journal of Remote Sensing, 19(1): 75-92
吴小丹, 闻建光, 肖青, 李新, 刘强, 唐勇, 窦宝成, 彭菁菁, 游冬琴, 李小文. 2015. 关键陆表参数遥感产品真实性检验方法研究进展. 遥感学报, 19(1): 76-92 [DOI: 10.11834/jrs.20154009http://dx.doi.org/10.11834/jrs.20154009]
Wu X D, Xiao Q, Wen J G and You D Q. 2019. Advances and challenges in the validation of remote sensing albedo products. Journal of Remote Sensing, 23(1): 11-23
吴小丹, 肖青, 闻建光, 游冬琴. 2019. 异质性地表反照率遥感产品真实性检验研究现状及挑战. 遥感学报, 23(1): 11-23 [DOI: 10.11834/jrs.20198057http://dx.doi.org/10.11834/jrs.20198057]
Wu X D, Xiao Q, Wen J G, You D Q and Hueni A. 2019a. Advances in quantitative remote sensing product validation: overview and current status. Earth-Science Reviews, 196: 102875 [DOI: 10.1016/j.earscirev.2019.102875http://dx.doi.org/10.1016/j.earscirev.2019.102875]
Wu X D, Xiao Q, Wen J G and You D Q. 2019b. Direct comparison and triple collocation: which is more reliable in the validation of coarse‐Scale satellite surface albedo products. Journal of Geophysical Research: Atmospheres, 124(10): 5198-5213 [DOI: 10.1029/2018JD029937http://dx.doi.org/10.1029/2018JD029937]
Wullschleger S D, Meinzer F C and Vertessy R A. 1998. A review of whole-plant water use studies in tree. Tree Physiology, 18(8/9): 499-512 [DOI: 10.1093/treephys/18.8-9.499http://dx.doi.org/10.1093/treephys/18.8-9.499]
Xiong Y J, Zhao S H, Tian F and Qiu G Y. 2015. An evapotranspiration product for arid regions based on the three-temperature model and thermal remote sensing. Journal of Hydrology, 530: 392-404 [DOI: 10.1016/j.jhydrol.2015.09.050http://dx.doi.org/10.1016/j.jhydrol.2015.09.050]
Xu F N, Wang W Z, Wang J M, Huang C L, Qi Y, Li Y and Ren Z G. 2019c. Aggregation of area-averaged evapotranspiration over the Ejina Oasis based on a flux matrix and footprint analysis. Journal of Hydrology, 575: 17-30 [DOI: 10.1016/j.jhydrol.2019.05.011http://dx.doi.org/10.1016/j.jhydrol.2019.05.011]
Xu T R, Bateni S M, Margulis S A, Song L S, Liu S M and Xu Z W. 2016. Partitioning evapotranspiration into soil evaporation and canopy transpiration via a two-source variational data assimilation system. Journal of Hydrometeorology, 17(9): 2353-2370 [DOI: 10.1175/jhm-d-15-0178.1http://dx.doi.org/10.1175/jhm-d-15-0178.1]
Xu T R, Guo Z X, Liu S M, He X L, Meng Y F Y, Xu Z W, Xia Y L, Xiao J F, Zhang Y, Ma Y F and Song L S. 2018a. Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale. Journal of Geophysical Research: Atmospheres, 123(16): 8674-8690 [DOI: 10.1029/2018JD028447http://dx.doi.org/10.1029/2018JD028447]
Xu T R, Bateni S M, Neale C M U, Auligne T, and Liu S M. 2018b. Estimation of turbulent heat fluxes by assimilation of land surface temperature observations from goes satellites into an ensemble kalman smoother framework. Journal of Geophysical Research: Atmospheres. 123(5): 2409-2423 [DOI: 10.1002/2017JD027732http://dx.doi.org/10.1002/2017JD027732]
Xu T R, He X L, Bateni S M, Auligne T, Liu S M, Xu Z W, Zhou J, Mao K B. 2019a. Mapping regional turbulent heat fluxes via variational assimilation of land surface temperature data from polar orbiting satellites. Remote Sensing of Environment, 221: 444-461 [DOI: 10.1016/j.rse.2018.11.023http://dx.doi.org/10.1016/j.rse.2018.11.023]
Xu T R, Guo Z X, Xia Y L, Ferreira V G, Liu S M, Wang K C, Yao Y J, Zhang X J and Zhao C S. 2019b. Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land surface models over conterminous United States. Journal of Hydrology, 578: 124105 [DOI: 10.1016/j.jhydrol.2019.124105http://dx.doi.org/10.1016/j.jhydrol.2019.124105]
Xu Z W, Liu S M, Li X, Shi S J, Wang J M, Zhu Z L, Xu T R, Wang W Z and Ma M G. 2013. Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE. Journal of Geophysical Research: Atmospheres, 118(23): 13140-13157 [DOI: 10.1002/2013jd020260http://dx.doi.org/10.1002/2013jd020260]
Yan N N, Tian F Y, Wu B F, Zhu W W and Yu M Z. 2018. Spatiotemporal analysis of actual evapotranspiration and its causes in the Hai Basin. Remote Sensing, 10(2): 332 [DOI: 10.3390/rs10020332http://dx.doi.org/10.3390/rs10020332]
Yang Y T and Shang S H. 2013. A hybrid dual-source scheme and trapezoid framework-based evapotranspiration model (HTEM) using satellite images: algorithm and model test. Journal of Geophysical Research: Atmospheres, 118(5): 2284-2300 [DOI: 10.1002/jgrd.50259http://dx.doi.org/10.1002/jgrd.50259]
Yang Y T, Long D, Guan H D, Liang W, Simmons C and Batelaan O. 2015. Comparison of three dual‐source remote sensing evapotranspiration models during the MUSOEXE‐12 campaign: revisit of model physics. Water Resources Research, 51(5): 3145-3165 [DOI: 10.1002/2014WR015619http://dx.doi.org/10.1002/2014WR015619]
Yao Y J, Liang S L, Cheng J, Liu S M, Fisher J B, Zhang X D, Jia K, Zhao X, Qin Q M, Zhao B, Han S J, Zhou G S, Zhou G Y, Li Y L and Zhao S H. 2013. MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm. Agricultural and Forest Meteorology, 171-172: 187-202 [DOI: 10.1016/j.agrformet.2012.11.016http://dx.doi.org/10.1016/j.agrformet.2012.11.016]
Yao Y J, Liang S L, Li X L, Hong Y, Fisher J B, Zhang N N, Chen J Q, Cheng J, Zhao S H, Zhang X T, Jiang B, Sun L, Jia K, Wang K C, Chen Y, Mu Q Z and Feng F. 2014. Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations. Journal of Geophysical Research: Atmospheres, 119(8): 4521-4545 [DOI: 10.1002/2013jd020864http://dx.doi.org/10.1002/2013jd020864]
Yuan W P, Liu S G, Yu G R, Bonnefond J M, Chen J Q, Davis K, Desai A R, Goldstein A H, Gianelle D, Rossi F, Suyker A E and Verma S B. 2010. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sensing of Environment, 114(7): 1416-1431 [DOI: 10.1016/j.rse.2010.01.022http://dx.doi.org/10.1016/j.rse.2010.01.022]
Zhang B Q, Xia Y L, Long B, Hobbins M, Zhao X N, Hain C, Li Y H and Anderson M C. 2020. Evaluation and comparison of multiple evapotranspiration data models over the contiguous United States: implications for the next phase of NLDAS (NLDAS-Testbed) development. Agricultural Forest Meteorology, 280: 107810 [DOI: 10.1016/j.agrformet.2019.107810http://dx.doi.org/10.1016/j.agrformet.2019.107810]
Zhang K, Kimball J S, Nemani R R and Running S W. 2010a. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resources Research, 46(9): W09522 [DOI: 10.1029/2009wr008800http://dx.doi.org/10.1029/2009wr008800]
Zhang K, Kimball J S and Running S W. 2016. A review of remote sensing based actual evapotranspiration estimation. WIREs: Water, 3(6): 834-853 [DOI: 10.1002/wat2.1168http://dx.doi.org/10.1002/wat2.1168]
Zhang R H, Tian J, Li Z L, Su H B, Chen S H and Tang X Z. 2010b. Principles and methods for the validation of quantitative remote sensing products. Science China Earth Sciences, 53(5): 741-751 [DOI: 10.1007/s11430-010-0021-3http://dx.doi.org/10.1007/s11430-010-0021-3]
Zhang R H. 2016. Key Scientific Issues of Quantitative Remote Sensing. Beijing: Higher Education Press: 16-23
张仁华. 2016. 定量遥感若干关键科学问题研究. 北京: 高等教育出版社: 16-23
Zhang T and Chen Y B. 2017. Analysis of dynamic spatiotemporal changes in actual evapotranspiration and its associated factors in the Pearl River basin based on MOD16. Water, 9(11): 832 [DOI: 10.3390/w9110832http://dx.doi.org/10.3390/w9110832]
Zhang Y Q, Kong D D, Gan R, Chiew F H, McVicar T R, Zhang Q and Yang Y T. 2019. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002-2017. Remote sensing of environment, 222: 165-182 [DOI: 10.1016/j.rse.2018.12.031http://dx.doi.org/10.1016/j.rse.2018.12.031]
Zheng C L, Jia L, Hu G C, Lu J, Wang K and Li Z S. 2016. Global evapotranspiration derived by ETMonitor model based on earth observations//2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing: IEEE [DOI: 10.1109/IGARSS.2016.7729049http://dx.doi.org/10.1109/IGARSS.2016.7729049]
相关作者
相关机构