GEE环境下的玉米低温冷害损失快速评估
Rapid assessment of maize chilling damage based on GEE
- 2020年24卷第10期 页码:1206-1220
纸质出版日期: 2020-10-07
DOI: 10.11834/jrs.20209149
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-10-07 ,
扫 描 看 全 文
张亮亮,张朝,曹娟,李子悦,陶福禄.2020.GEE环境下的玉米低温冷害损失快速评估.遥感学报,24(10): 1206-1220
Zhang L L,Zhang Z,Cao J,Li Z Y and Tao F L. 2020. Rapid assessment of maize chilling damage based on GEE. Journal of Remote Sensing(Chinese), 24(10):1206-1220[DOI:10.11834/jrs.20209149]
大范围、及时、准确的灾害损失评估与制图对防灾减灾、农业保险和粮食安全等至关重要。针对传统灾害损失评估方法空间尺度单一、泛化能力差、时效性低,可操作性弱等问题,本文建立了一种遥感产品耦合作物模型的多尺度的灾害损失评估方法MDLA (a Multiscale Disaster Loss Assessment)。该方法利用作物模型的多情景模拟产生大量的灾害样本,结合对应日期的遥感指标构建灾害脆弱性模型,依托Google Earth Engine(GEE)平台将其应用到高分辨率遥感影像和格点灾害指标进行逐象元评估。以鄂伦春自治旗玉米为例,基于精细校准的CERES-Maize模型的模拟,利用两个生长季窗口的LAI和冷积温(CDD)建立统计模型来刻画低温对最终产量的影响,结合Sentinel-2数据逐格点计算完成高精度损失制图。结果显示,校准后的CERES-Maize模拟物候和产量的NRMSE 分别为3.3%和8.9%。冷害情景模拟结果表明不同类型和生育期的低温冷害对玉米产量的影响不尽相同,其中生长峰值期(出苗—吐丝和吐丝—灌浆)最为敏感。回代检验显示,MDLA方法估算精度为11.4%,与历史冷害年份的实际损失相吻合。经评估,鄂伦春2018-08-09的冷害导致玉米减产23.7%,受灾面积1.86×10
4
ha,其中高海拔地区损失较重(减产率
>
25%),低温冷害对该区玉米生产构成了严重的威胁。与现有的统计回归、作物模型模拟以及同化等技术相比,其优势在于:(1)结合遥感观测和作物模型模拟技术能更好地刻画了灾害对产量的影响过程;(2)利用GEE平台快速处理海量遥感数据,提高了灾害损失评估的时效性;(3)不受地面实测数据的限制,易操作,可实现动态、多尺度(象元、田块、村,县等)的损失评估,这为防灾减损、维持粮食丰产稳产提供了保障,也为农业保险的业务化运行提供了思路。
Extensive
timely
and accurate mapping of yield losses is critical and prerequisite in disaster prevention and reduction
agricultural insurance
and food security. Given the coarse resolution
poor generalization ability
low timeliness
and weak operability of traditional loss assessment method
we propose a new approach called Multiscale Disaster Loss Assessment (MDLA) by coupling crop model with remote sensing to assess yield loss rapidly with satellite images. A series of disaster scenarios was simulated using a calibrated crop model. Related results
including final yield and crop growing state variable LAI
were inputted into disaster datasets. A susceptibility model of disaster was then constructed. Finally
pixel-by-pixel yield loss was evaluated on the basis of the susceptibility model combined with high-resolution image with gridded disaster indices within the Google Earth Engine (GEE) platform.
The new method was used to assess the impacts of chilling injury on maize by applying carefully calibrated CERES-Maize in Oroqen
Inner Mongolia Autonomous Region. We constructed the cold susceptibility model
which properly characterized the cold damage on maize yield
including three independent variables
LAI in two growing season windows and a cold index (cold degree days)
and yield loss. We further mapped pixel-based maize yield losses together with Sentinel-2 data. Mapping results showed that CERES-Maize
once calibrated
can appropriately simulate the growth and development state of maize under various management and weather conditions with a phenology bias of
<
3.3% and yield NRMSE of
<
8.9%. Furthermore
impacts of chilling injury varies in cold type and occurring time due to the high susceptibility of maize at the peak growing period (emergence-silking and silking-graining filling). The MDLA method successfully estimated significant losses during cold years with an accuracy of 11.4%. Moreover
the recent cold event (occurred at 2018/08/09) reduced the maize yield by 23.7% and affected 1.86 × 10
4
ha of growing areas. The occurrence of more than 25% yield loss in high-altitude regions indicated that low temperature is a major threat on crop production in northeastern China.
Our results indicated that MDLA is consistent with statistical regression
crop model simulation
and assimilation technology. Moreover
the advantages of MDLA are presented as follows: (1) The impact of disaster is appropriately characterized by combining remote sensing observation with simulated physiological states in crop models. (2) Processing the satellite image within the GEE platform significantly reduces the computing time of loss assessment. (3) Multiscale losses are mapped in a dynamic and operable way. This type of mapping can be performed not only in large-scale areas but also the county- or even field-scale regions. Our study can help decision-makers in reasonably preventing agricultural disasters and maintaining steady grain production while providing a more practical means for operational agricultural insurance.
遥感多尺度灾害损失评估(MDLA)Google Earth Engine作物模型冷害指标玉米
remote sensingMultiscale Disaster Loss Assessment (MDLA)Google Earth Engine(GEE)crop modelchilling injury indexmaize
Ahmed I, Rahman M H U, Ahmed S, Hussain J, Ullah A and Judge J. 2018. Assessing the impact of climate variability on maize using simulation modeling under semi-arid environment of Punjab, Pakistan. Environmental Science and Pollution Research, 25(28): 28413-28430 [DOI: 10.1007/s11356-018-2884-3http://dx.doi.org/10.1007/s11356-018-2884-3]
Angstrom A. 1924. Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Quarterly Journal of the Royal Meteorological Society, 50(210): 121-126 [DOI: 10.1002/qj.49705021008http://dx.doi.org/10.1002/qj.49705021008]
Angulo C, Rötter R, Lock R, Enders A, Fronzek S and Ewert F. 2013. Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe. Agricultural and Forest Meteorology, 170: 32-46 [DOI: 10.1016/j.agrformet.2012.11.017http://dx.doi.org/10.1016/j.agrformet.2012.11.017]
Azzari G, Jain M and Lobell D B. 2017. Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries. Remote Sensing of Environment, 202: 129-141 [DOI: 10.1016/j.rse.2017.04.014http://dx.doi.org/10.1016/j.rse.2017.04.014]
CGIAR. 2015. CGIAR strategy and results framework 2016-2030. CGIAR Consortium
Challinor A J, Muller C, Asseng S, Deva C, Nicklin K J, Wallach D, Vanuytrecht E, Whitfield S, Ramirez-Villegas J and Koehler A K. 2018. Improving the use of crop models for risk assessment and climate change adaptation. Agricultural Systems, 159: 296-306 [DOI: 10.1016/j.agsy.2017.07.010http://dx.doi.org/10.1016/j.agsy.2017.07.010]
Chen D. 2017. Study on Monitoring and Evaluating the Chilling Injury of Rice in Northeast China by Remote-Sensing and Crop Model. Nanjing: Nanjing University of Information Science and Technology, 1-2
陈德. 2017. 基于遥感和作物模型的东北水稻低温冷害监测评估. 南京: 南京信息工程大学, 1-2
Chen Y, Zhang Z and Tao F L. 2018. Improving regional winter wheat yield estimation through assimilation of phenology and leaf area index from remote sensing data. European Journal of Agronomy, 101: 163-173 [DOI: 10.1016/j.eja.2018.09.006http://dx.doi.org/10.1016/j.eja.2018.09.006]
Diffenbaugh N S, Singh D, Mankin J S, Horton D E, Swain D L, Touma D, Charland A, Liu Y J, Haugen M, Tsiang M and Rajaratnam B. 2017. Quantifying the influence of global warming on unprecedented extreme climate events. Proceedings of the National Academy of Sciences of the United States of America, 114(19): 4881-4886 [DOI: 10.1073/pnas.1618082114http://dx.doi.org/10.1073/pnas.1618082114]
Dokoohaki H, Gheysari M, Mousavi S F and Hoogenboom G. 2017. Effects of different irrigation regimes on soil moisture availability evaluated by CSM-CERES-Maize model under semi-arid condition. Ecohydrology and Hydrobiology, 17(3): 207-216 [DOI: 10.1016/j.ecohyd.2017.06.001http://dx.doi.org/10.1016/j.ecohyd.2017.06.001]
Dong J W, Xiao X M, Menarguez M A, Zhang G L, Qin Y W, Thau D, Biradar C and Moore III B. 2016a. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sensing of Environment, 185: 142-154 [DOI: 10.1016/j.rse.2016.02.016http://dx.doi.org/10.1016/j.rse.2016.02.016]
Dong T F, Liu J G, Qian B D, Zhao T, Jing Q, Geng X Y, Wang J F, Huffman T and Shang J L. 2016b. Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data. International Journal of Applied Earth Observation and Geoinformation, 49: 63-74 [DOI: 10.1016/j.jag.2016.02.001http://dx.doi.org/10.1016/j.jag.2016.02.001]
Fan Y D, Wu W, Wang W, Liu M and Wen Q. 2016. Research progress of disaster remote sensing in China. Journal of Remote Sensing, 20(5): 1170-1184
范一大, 吴玮, 王薇, 刘明, 温奇. 2016. 中国灾害遥感研究进展. 遥感学报, 20(5): 1170-1184 [DOI: 10.11834/jrs.20166171http://dx.doi.org/10.11834/jrs.20166171]
Fang X Q, Wang Y and Zhu X X. 2005. Change of cool summer hazard under an adaptation behavior to the climate warming in Heilongjiang Province, Northeast China. Geographical Research, 24(5): 664-672
方修琦, 王媛, 朱晓禧. 2005. 气候变暖的适应行为与黑龙江省夏季低温冷害的变化. 地理研究, 24(5): 664-672
FAO. 2017. FAOSTAT-Food and agriculture data[EB/OL].http://faostat.fao.org/http://faostat.fao.org/[ 2019-05-14]
Godfray H C J, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty J, Robinson S, Thomas S M and Toulmin G. 2010. Food security: the challenge of feeding 9 billion people. Science, 327(5967): 812-818 [DOI: 10.1126/science.1185383http://dx.doi.org/10.1126/science.1185383]
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D and Moore R. 2017. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202: 18-27 [DOI: 10.1016/j.rse.2017.06.031http://dx.doi.org/10.1016/j.rse.2017.06.031]
Grzybowski M, Adamczyk J, Jończyk M, Sobkowiak A, Szczepanik J, Frankiewicz K, Fronk J and Sowiński P. 2019. Increased photosensitivity at early growth as a possible mechanism of maize adaptation to cold springs. Journal of Experimental Botany, 70(10): 2887-2904 [DOI: 10.1093/jxb/erz096http://dx.doi.org/10.1093/jxb/erz096]
Guan K, Sultan B, Biasutti M, Baron C and Lobell D B. 2017. Assessing climate adaptation options and uncertainties for cereal systems in West Africa. Agricultural and Forest Meteorology, 232: 291-305 [DOI: 10.1016/j.agrformet.2016.07.021http://dx.doi.org/10.1016/j.agrformet.2016.07.021]
He D, Wang E L, Wang J and Robertson M J. 2017. Data requirement for effective calibration of process-based crop models. Agricultural and Forest Meteorology, 234-235: 136-148 [DOI: 10.1016/j.agrformet.2016.12.015http://dx.doi.org/10.1016/j.agrformet.2016.12.015]
He Y B, Chen Y Q and Tang H J. 2007. Effects of cold damage on paddy rice yield per unit area based on retrieving of daily LAI by MODIS and SIMRIW model. Transactions of the CSAE, 23(11): 188-194
何英彬, 陈佑启, 唐华俊. 2007. 基于MODIS反演逐日LAI及SIMRIW模型的冷害对水稻单产的影响研究. 农业工程学报, 23(11): 188-194 [DOI: 10.3321/j.issn:1002-6819.2007.11.034http://dx.doi.org/10.3321/j.issn:1002-6819.2007.11.034]
Holzworth D P, Huth N I, deVoil P G, Zurcher E J, Herrmann N I, McLean G, Chenu K, van Oosterom E J, Snow V, Murphy C, Moore A D, Brown H, Whish J P M, Verrall S, Fainges J, Bell L W, Peake A S, Poulton P L, Hochman Z, Thorburn P J, Gaydon D S, Dalgliesh N P, Rodriguez D, Cox H, Chapman S, Doherty A, Teixeira E, Sharp J, Cichota R, Vogeler I, Li F Y, Wang E L, Hammer G L, Robertson M J, Dimes J P, Whitbread A M, Hunt J, van Rees H, McClelland T, Carberry P S, Hargreaves J N G, MacLeod N, McDonald C, Harsdorf J, Wedgwood S and Keating B A. 2014. APSIM-Evolution towards a new generation of agricultural systems simulation. Environmental Modelling and Software, 62: 327-350 [DOI: 10.1016/j.envsoft.2014.07.009http://dx.doi.org/10.1016/j.envsoft.2014.07.009]
Hoogenboom G, White J W and Messina C D. 2004. From genome to crop: integration through simulation modeling. Field Crops Research, 90(1): 145-163 [DOI: 10.1016/j.fcr.2004.07.014http://dx.doi.org/10.1016/j.fcr.2004.07.014]
Hou Q, Wang H M and Yun W L. 2015. The research on the chilling injury indicators for corn in Hetao irrigation district. Journal of Arid Land Resources and Environment, 29(2): 179-184
侯琼, 王海梅, 云文丽. 2015. 河套灌区玉米低温冷害监测评估指标的研究. 干旱区资源与环境, 29(2): 179-184 [DOI: 10.13448/j.cnki.jalre.2015.066http://dx.doi.org/10.13448/j.cnki.jalre.2015.066]
Huang J X, Tian L Y, Liang S L, Ma H Y, Becker-Reshef I, Huang Y B, Su W, Zhang X D, Zhu D H and Wu W B. 2015. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agricultural and Forest Meteorology, 204: 106-121 [DOI: 10.1016/j.agrformet.2015.02.001http://dx.doi.org/10.1016/j.agrformet.2015.02.001]
Jiang P, Xu H Y, Cao Y B, Liu X Q and Shi D Y. 2010. An instant and interactive platform based on Google Earth Plug-in//Proceedings of the 2010 2nd International Conference on Advanced Computer Control. Shenyang, China: IEEE [DOI: 10.1109/ICACC.2010.5487288http://dx.doi.org/10.1109/ICACC.2010.5487288]
Jin Z N, Zhuang Q L, Wang J L, Archontoulis S V, Zobel Z and Kotamarthi V R. 2017. The combined and separate impacts of climate extremes on the current and future us rainfed maize and soybean production under elevated CO2. Global Change Biology, 23(7): 2687-2704 [DOI: 10.1111/gcb.13617http://dx.doi.org/10.1111/gcb.13617]
Jones J W, Hoogenboom G, Porter C H, Boote K J, Batchelor W D, Hunt L A, Wilkens P W, Singh U, Gijsman A J and Ritchie J T. 2003. The DSSAT cropping system model. European Journal of Agronomy, 18(3/4): 235-265 [DOI: 10.1016/S1161-0301(02)00107-7http://dx.doi.org/10.1016/S1161-0301(02)00107-7]
Keating B A, Carberry P S, Hammer G L, Probert M E, Robertson M J, Holzworth D, Huth N I, Hargreaves J N G, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes J P, Silburn M, Wang E, Brown S, Bristow K L, Asseng S, Chapman S, McCown R L, Freebairn D M and Smith C J. 2003. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18(3/4): 267-288 [DOI: 10.1016/s1161-0301(02)00108-9http://dx.doi.org/10.1016/s1161-0301(02)00108-9].
Kelley L C, Pitcher L and Bacon C. 2018. Using Google earth engine to map complex shade-grown coffee landscapes in northern Nicaragua. Remote Sensing, 10(6): 952 [DOI: 10.3390/rs10060952http://dx.doi.org/10.3390/rs10060952]
Kim J, Lee C K, Sang W Y, Shin P, Cho H and Seo H. 2017. Introduction to empirical approach to estimate rice yield and comparison with remote sensing approach. Korean Journal of Remote Sensing, 33(5): 733-740 [DOI: 10.7780/kjrs.2017.33.5.2.12http://dx.doi.org/10.7780/kjrs.2017.33.5.2.12]
Kumudini S, Andrade F H, Boote K J, Brown G A, Dzotsi K A, Edmeades G O, Gocken T, Goodwin M, Halter A L, Hammer G L, Hatfield J L, Jones J W, Kemanian A R, Kim S H, Kiniry J, Lizaso J I, Nendel C, Nielsen R L, Parent B, Stӧckle C O, Tardieu F, Thomison P R, Timlin D J, Vyn T J, Wallach D, Yang H S and Tollenaar M. 2014. Predicting maize phenology: intercomparison of functions for developmental response to temperature. Agronomy Journal, 106(6): 2087-2097 [DOI: 10.2134/agronj14.0200http://dx.doi.org/10.2134/agronj14.0200]
Kuwata K and Shibasaki R. 2015. Estimating crop yields with deep learning and remotely sensed data//Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium. Milan, Italy: IEEE [DOI: 10.1109/IGARSS.2015.7325900http://dx.doi.org/10.1109/IGARSS.2015.7325900]
Li X Y, Liu N J, You L Z, Ke X L, Liu H J, Huang M L and Waddington S R. 2016. Patterns of cereal yield growth across China from 1980 to 2010 and their implications for food production and food security. PLoS One, 11(7): e0159061 [DOI: 10.1371/journal.pone.0159061http://dx.doi.org/10.1371/journal.pone.0159061]
Li Y J and Wang C Y. 2007. Research on comprehensive index of chilling damage to corn in Northeast China. Journal of Natural Disasters, 16(6): 15-20
李祎君, 王春乙. 2007. 东北地区玉米低温冷害综合指标研究. 自然灾害学报, 16(6): 15-20 [DOI: 10.3969/j.issn.1004-4574.2007.06.003http://dx.doi.org/10.3969/j.issn.1004-4574.2007.06.003]
Liu B, Asseng S, Müller C, Ewert F, Elliott J, Lobell D B, Martre P, Ruane A C, Wallach D, Jones J W, Rosenzweig C, Aggarwal P K, Alderman P D, Anothai J, Basso B, Biernath C, Cammarano D, Challinor A, Deryng D, De Sanctis G, Doltra J, Fereres E, Folberth C, Garcia-Vila M, Gayler S, Hoogenboom G, Hunt L A, Izaurralde R C, Jabloun M, Jones C D, Kersebaum K C, Kimball B A, Koehler A K, Kumar S N, Nendel C, O’Leary G J, Olesen J E, Ottman M J, Palosuo T, Prasad P V V, Priesack E, Pugh T A M, Reynolds M, Rezaei E E, Rötter R P, Schmid E, Semenov M A, Shcherbak I, Stehfest E, Stöckle C O, Stratonovitch P, Streck T, Supit I, Tao F L, Thorburn P, Waha K, Wall G W, Wang E L, White J W, Wolf J, Zhao Z G and Zhu Y. 2016. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 6(12): 1130-1136 [DOI: 10.1038/nclimate3115http://dx.doi.org/10.1038/nclimate3115]
Liu B C, Wang S L, Zhuang L W, Lu Z G, Shi X L and Song Y J. 2003. Study of low temperature damage prediction applications in EN, China based on a scaling-up maize dynamic model. Journal of Applied Meteorological Science, 14(5): 616-625
刘布春, 王石立, 庄立伟, 卢志光, 史学丽, 宋永佳. 2003. 基于东北玉米区域动力模型的低温冷害预报应用研究. 应用气象学报, 14(5): 616-625 [DOI: 10.3969/j.issn.1001-7313.2003.05.012http://dx.doi.org/10.3969/j.issn.1001-7313.2003.05.012]
Liu X F, Zhang Z, Shuai J B, Wang P, Shi W J, Tao F L and Chen Y. 2013. Impact of chilling injury and global warming on rice yield in Heilongjiang province. Journal of Geographical Sciences, 23(1): 85-97 [DOI: 10.1007/s11442-013-0995-9http://dx.doi.org/10.1007/s11442-013-0995-9]
Liu Z J, Yang X G, Wang W F, Zhao J F, Zhang H L and Chen F. 2010. The possible effects of global warming on cropping systems in China IV. The possible impact of future climatic warming on the northern limits of spring maize in three provinces of Northeast China. Scientia Agricultura Sinica, 43(11): 2280-2291
刘志娟, 杨晓光, 王文峰, 赵俊芳, 张海林, 陈阜. 2010. 全球气候变暖对中国种植制度可能影响IV. 未来气候变暖对东北三省春玉米种植北界的可能影响. 中国农业科学, 43(11): 2280-2291 [DOI: 10.3864/j.issn.0578-1752.2010.11.011http://dx.doi.org/10.3864/j.issn.0578-1752.2010.11.011]
Lobell D B, Thau D, Seifert C, Engle E and Little B. 2015. A scalable satellite-based crop yield mapper. Remote Sensing of Environment, 164: 324-333 [DOI: 10.1016/j.rse.2015.04.021http://dx.doi.org/10.1016/j.rse.2015.04.021]
López-Delgado H A, Martínez-Gutiérrez R, Mora-Herrera M E and Torres-Valdés Y. 2018. Induction of freezing tolerance by the application of hydrogen peroxide and salicylic acid as tuber-dip or canopy spraying inSolanum tuberosum L. plants. Potato Research, 61(3): 195-206 [DOI: 10.1007/s11540-018-9368-1http://dx.doi.org/10.1007/s11540-018-9368-1]
Lü Z F, Liu X J, Tang L, Liu L L, Cao W X and Zhu Y. 2013. Regional prediction and evaluation of wheat phenology based on the WheatGrow and CERES models. Scientia Agricultura Sinica, 46(6): 1136-1148
吕尊富, 刘小军, 汤亮, 刘蕾蕾, 曹卫星, 朱艳. 2013. 基于wheatgrow和ceres模型的区域小麦生育期预测与评价. 中国农业科学, 46(6): 1136-1148 [DOI: 10.3864/j.issn.0578-1752.2013.06.006http://dx.doi.org/10.3864/j.issn.0578-1752.2013.06.006]
Ma S Q, Liu Y X and Wang Q. 2006. Dynamic prediction and evaluation method of maize chilling damage. Chinese Journal of Applied Ecology, 17(10): 1905-1910
马树庆, 刘玉英, 王琪. 2006. 玉米低温冷害动态评估和预测方法. 应用生态学报, 17(10): 1905-1910
Ma S Q, Xi Z X and Wang Q. 2003. Risk evaluation of cold damage to corn in Northeast China. Journal of Natural Disasters, 12(3): 137-141
马树庆, 袭祝香, 王琪. 2003. 中国东北地区玉米低温冷害风险评估研究. 自然灾害学报, 12(3): 137-141 [DOI: 10.13577/j.jnd.2003.0322http://dx.doi.org/10.13577/j.jnd.2003.0322]
Marcuzzo L L and Haveroth R. 2016. Development of a weather-based model for Botrytis leaf blight of onion. Summa Phytopathologica, 42(1): 92-93 [DOI: 10.1590/0100-5405/2034http://dx.doi.org/10.1590/0100-5405/2034]
Meng Y L, Cao W X, Zhou Z G and Liu X W. 2003. A process-based model for simulating phasic development and phenology in rice. Agricultural Sciences in China, 2(11): 1277-1284
Mutanga O and Kumar L. 2019. Google earth engine applications. Remote Sensing, 11(5): 591 [DOI: 10.3390/rs11050591http://dx.doi.org/10.3390/rs11050591]
Pan Z K. 2016. Integration of remote sensing and crop growth model for regional low temperature impact monitoring. Early warning, and yield estimation. Hangzhou: Zhejiang University, 22-38 (潘灼坤. 2016. 耦合遥感信息与作物生长模型的区域低温影响监测、预警与估产. 杭州: 浙江大学, 22-38)
Pirttioja N, Carter T R, Fronzek S, Bindi M, Hoffmann H, Palosuo T, Ruiz-Ramos M, Tao F L, Trnka M, Acutis M, Asseng S, Baranowski P, Basso B, Bodin P, Buis S, Cammarano D, Deligios P, Destain M F, Dumont B, Ewert F, Ferrise R, François L, Gaiser T, Hlavinka P, Jacquemin I, Kersebaum K C, Kollas C, Krzyszczak J, Lorite I J, Minet J, Minguez M I, Montesino M, Moriondo M, Müller C, Nendel C, Öztürk I, Perego A, Rodríguez A, Ruane A C, Ruget F, Sanna M, Semenov M A, Slawinski C, Stratonovitch P, Supit I, Waha K, Wang E, Wu L, Zhao Z and Rötter R P. 2015. Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Climate Research, 65: 87-105 [DOI: 10.3354/cr01322http://dx.doi.org/10.3354/cr01322]
Prasad T K, Anderson M D, Martin B A and Stewart C R. 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. The Plant Cell, 6(1): 65-74 [DOI: 10.2307/3869675http://dx.doi.org/10.2307/3869675]
Rahnemoonfar M and Sheppard C. 2017. Real-time yield estimation based on deep learning//Proceedings of SPIE 10218, Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping II. Anaheim: SPIE [DOI: 10.1117/12.2263097http://dx.doi.org/10.1117/12.2263097]
Ray D K, Ramankutty N, Mueller N D, West P C and Foley J A. 2012. Recent patterns of crop yield growth and stagnation. Nature Communications, 3: 1293 [DOI: 10.1038/ncomms2296http://dx.doi.org/10.1038/ncomms2296]
Ren J Q, Chen Z X, Zhou Q B, Liu J and Tang H J. 2015. MODIS vegetation index data used for estimating corn yield in USA. Journal of Remote Sensing, 19(4): 568-577
任建强, 陈仲新, 周清波, 刘佳, 唐华俊. 2015. MODIS植被指数的美国玉米单产遥感估测. 遥感学报, 19(4): 568-577 [DOI: 10.11834/jrs.20154146http://dx.doi.org/10.11834/jrs.20154146]
Rosenzweig C, Elliott J, Deryng D, Ruane A C, Müller C, Arneth A, Boote K J, Folberth C, Glotter M, Khabarov N, Neumann K, Piontek F, Pugh T A M, Schmid E, Stehfest E, Yang H and Jones J W. 2014. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America, 111(9): 3268-3273 [DOI: 10.1073/pnas.1222 463110http://dx.doi.org/10.1073/pnas.1222463110]
Sazib N, Mladenova I and Bolten J. 2018. Leveraging the Google earth engine for drought assessment using global soil moisture data. Remote Sensing, 10(8): 1265 [DOI: 10.3390/rs10081265http://dx.doi.org/10.3390/rs10081265]
Schlenker W and Roberts M J. 2009. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proceedings of the National Academy of Sciences of the United States of America, 106(37): 15594-15598 [DOI: 10.1073/pnas.0906865106http://dx.doi.org/10.1073/pnas.0906865106]
Shiferaw B, Prasanna B M, Hellin J and Bänziger M. 2011. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3(3): 307-327 [DOI: 10.1007/s12571-011-0140-5http://dx.doi.org/10.1007/s12571-011-0140-5]
Stott P A, Christidis N, Otto F E L, Sun Y, Vanderlinden J P, van Oldenborgh G J, Vautard R, von Storch H, Walton P, Yiou P and Zwiers F W. 2016. Attribution of extreme weather and climate‐related events. Wiley Interdisciplinary Reviews: Climate Change, 7(1): 23-41 [DOI: 10.1002/wcc.380http://dx.doi.org/10.1002/wcc.380]
Tao F L, Zhang Z, Liu J Y and Yokozawa M. 2009. Modelling the impacts of weather and climate variability on crop productivity over a large area: a new super-ensemble-based probabilistic projection. Agricultural and Forest Meteorology, 149(8): 1266-1278 [DOI: 10.1016/j.agrformet.2009.02.015http://dx.doi.org/10.1016/j.agrformet.2009.02.015]
Wang P, Zhang Z, Chen Y, Wei X, Feng B Y and Tao F L. 2016. How much yield loss has been caused by extreme temperature stress to the irrigated rice production in china? Climatic Change, 134(4): 635-650. [DOI: 10.1007/s10584-015-1545-5http://dx.doi.org/10.1007/s10584-015-1545-5]
Wu B F, Zhang F, Liu C L, Zhang L and Luo Z M. 2004. An integrated method for crop condition monitoring. Journal of Remote Sensing, 20(6): 498-514
吴炳方, 张峰, 刘成林, 张磊, 罗治敏. 2004. 农作物长势综合遥感监测方法. 遥感学报, 20(6): 498-514 [DOI: 10.3321/j.issn:1007-4619.2004.06.002http://dx.doi.org/10.3321/j.issn:1007-4619.2004.06.002]
Wu B F, Zhang M, Zeng H W, Zhang X, Yan N N and Meng J H. 2016. Agricultural monitoring and early warning in the era of big data. Journal of Remote Sensing, 20(5): 1027-1037
吴炳方, 张淼, 曾红伟, 张鑫, 闫娜娜, 蒙继华. 2016. 大数据时代的农情监测与预警. 遥感学报, 20(5): 1027-1037 [DOI: 10.11834/jrs.20166248http://dx.doi.org/10.11834/jrs.20166248]
Wu L, Liu X N, Zhou B T, Li L F and Tan Z. 2012. Spatial-time continuous changes simulation of crop growth parameters with multi-source remote sensing data and crop growth model. Journal of Remote Sensing, 16(6): 1173-1191
吴伶, 刘湘南, 周博天, 李露锋, 谭正. 2012. 多源遥感与作物模型同化模拟作物生长参数时空域连续变化. 遥感学报, 16(6): 1173-1191 [DOI: 10.7322/abcs.v33i1.170http://dx.doi.org/10.7322/abcs.v33i1.170]
Xiong W, Holman I, Conway D, Lin E D and Li Y. 2008. A crop model cross calibration for use in regional climate impacts studies. Ecological Modelling, 213(3/4): 365-380 [DOI: 10.1016/j.ecolmodel.2008.01.005http://dx.doi.org/10.1016/j.ecolmodel.2008.01.005]
Xu S S, Yang S B and Gao P. 2018. Simulation of rice empty grain rate by coupling ORYZA2000 with sterile-type chilling injury loss evaluation model. Jiangsu Agricultural Sciences, 46(13): 68-73
徐莎莎, 杨沈斌, 高苹. 2018. Oryza2000模型与障碍型冷害损失评估模型耦合模拟水稻空壳率. 江苏农业科学, 46(13): 68-73 [DOI: 10.15889/j.issn.1002-1302.2018.13.016http://dx.doi.org/10.15889/j.issn.1002-1302.2018.13.016]
Yan M C, Cao W Y, Luo W H and Jiang H D. 2000. A mechanistic model of phasic and phenological development of wheat I: assumption and description of the model. Chinese Journal of Applied Ecology, 11(3): 355-359
严美春, 曹卫星, 罗卫红, 江海东. 2000. 小麦发育过程及生育期机理模型的研究I.建模的基本设想与模型的描述. 应用生态学报, 11(3): 355-359 [DOI: 10.13287/j.1001-9332.2000.0090http://dx.doi.org/10.13287/j.1001-9332.2000.0090]
Yan Y, Liu Q H, Liu Q, Li J and Chen F L. 2006. Methodolagy of winter wheat yield prediction based on assimilation of remote sensing data with crop growth model. Journal of Remote Sensing, 10(5): 804-811
闫岩, 柳钦火, 刘强, 李静, 陈良富. 2006. 基于遥感数据与作物生长模型同化的冬小麦长势监测与估产方法研究. 遥感学报, 10(5): 804-811 [DOI: 10.3321/j.issn:1007-4619.2006.05.030http://dx.doi.org/10.3321/j.issn:1007-4619.2006.05.030]
Yang Y, Liu B, Liu X J, Liu L L, Fan X M, Cao W X and Zhu Y. 2014. Comparison of phasic development models in wheat. Journal of Nanjing Agricultural University, 37(1): 6-14
杨月, 刘兵, 刘小军, 刘蕾蕾, 范雪梅, 曹卫星, 朱艳. 2014. 小麦生育期模拟模型的比较研究. 南京农业大学学报, 37(1): 6-14 [DOI: 10.7685/j.issn.1000-2030.2014.01.002http://dx.doi.org/10.7685/j.issn.1000-2030.2014.01.002]
Zhang J P, Wang C Y, Zhao Y X, Yang X G and Wang J. 2012. Impact evaluation of low temperature to yields of maize in Northeast China based on crop growth model. Acta Ecologica Sinica, 32(13): 4132-4138
张建平, 王春乙, 赵艳霞, 杨晓光, 王靖. 2012. 基于作物模型的低温冷害对我国东北三省玉米产量影响评估. 生态学报, 32(13): 4132-4138 [DOI: 10.5846/stxb201106070758http://dx.doi.org/10.5846/stxb201106070758]
Zhang S and Tao F L. 2012. Review of research on rice phenology models. Progress in Geography, 31(11): 1485-1491
张帅, 陶福禄. 2012. 水稻发育期模型研究进展. 地理科学进展, 31(11): 1485-1491 [DOI: 10.11820/dlkxjz.2012.11.009http://dx.doi.org/10.11820/dlkxjz.2012.11.009]
Zhang S L. 2017. Analysis on the characteristics of chilling injury in Oroqen, Inner Mongolia Autonomous Region. South Agricultural Machinery, 48(4): 181
张胜利. 2017. 鄂伦春自治旗低温冷害特点分析. 南方农机, 48(4): 181
Zhang Z, Chen Y, Wang C Z, Wang P and Tao F L. 2017. Future extreme temperature and its impact on rice yield in China. International Journal of Climatology, 37(14): 4814-4827 [DOI: 10.1002/joc.5125http://dx.doi.org/10.1002/joc.5125]
Zhang Z, Chen Y, Wang P, Zhang S, Tao F L and Liu X F. 2014. Spatial and temporal changes of agro-meteorological disasters affecting maize production in China since 1990. Natural Hazards, 71(3): 2087-2100 [DOI: 10.1007/s11069-013-0998-yhttp://dx.doi.org/10.1007/s11069-013-0998-y]
Zhao J F, Yang X G and Liu Z J. 2009. Influence of climate warming on serious low temperature and cold damage and cultivation pattern of spring maize in Northeast China. Acta Ecologica Sinica, 29(12): 6544-6551
赵俊芳, 杨晓光, 刘志娟. 2009. 气候变暖对东北三省春玉米严重低温冷害及种植布局的影响. 生态学报, 29(12): 6544-6551 [DOI: 10.3321/j.issn:1000-0933.2009.12.029http://dx.doi.org/10.3321/j.issn:1000-0933.2009.12.029]
Zhao Y and Lobell D B. 2017. Assessing the heterogeneity and persistence of farmers’ maize yield performance across the North China Plain. Field Crops Research, 205: 55-66 [DOI: 10.1016/j.fcr.2016.12.023http://dx.doi.org/10.1016/j.fcr.2016.12.023]
Zhao Y H, Tang L, Cao W X and Zhu Y. 2010. Adaptability evaluation of a wheat growth model (WheatGrow). Journal of Triticeae Crops, 30(3): 443-448
赵扬辉, 汤亮, 曹卫星, 朱艳. 2010. 小麦生长模拟模型(WheatGrow)的适应性评价. 麦类作物学报, 30(3): 443-448
相关作者
相关机构