地表反射率地形校正物理模型与效果评价方法研究进展
Advances in topographic correction methods for optical remote sensing imageries
- 2020年24卷第8期 页码:958-974
纸质出版日期: 2020-08-07
DOI: 10.11834/jrs.20209167
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-08-07 ,
扫 描 看 全 文
林兴稳,闻建光,吴胜标,郝大磊,肖青,柳钦火.2020.地表反射率地形校正物理模型与效果评价方法研究进展.遥感学报,24(8): 958-974
Lin X W,Wen J G,Wu S B,Hao D L,Xiao Q and Liu Q H. 2020. Advances in topographic correction methods for optical remote sensing imageries. Journal of Remote Sensing(Chinese),24(8): 958-974[DOI:10.11834/jrs.20209167]
地形校正是准确获取地形复杂区遥感反射率的重要步骤,对提高山区地表遥感参数定量化反演精度,扩大遥感产品应用广度具有重要意义。从20世纪80年代开始,国内外学者开始对准确获取山区地表遥感反射率进行研究,建立了多种地形校正模型来减少或消除遥感图像中地形效应影响,减少同种地表类型的反射率差异,并将地形校正模型分为经验模型和物理模型。根据构建物理模型时是否考虑地表非朗伯体特性,将物理模型分为朗伯体假设模型和非朗伯体假设模型,本文分别从朗伯体假设模型和非朗伯体假设校正模型展开叙述。从两类模型构建的理论基础,模型特点,局限性等几方面进行分析和讨论,描述了两类模型的发展历程,系统阐述了朗伯体假设模型和非朗伯体假设模型的适用性和不足,剖析了目前地形校正模型存在的问题与挑战。同时,本文也比较了应用于地形校正的效果评价方法,并展望了地形校正方法和地形校正评价方法的未来主要发展方向。
Steep terrain produces serious topographic effects on remote sensing satellite imageries. Serious topographic effects cause difficulty in classifying vegetation species and retrieving key essential climate variables (such as albedo
Leaf Area Index
and fraction of absorbed photo synthetically active radiation). These effects also bring complexity in distinguishing the unhealthy change in land covers over rugged terrains. Topographic correction is necessary for remote sensing applications over mountainous areas. Researchers have attempted to remove or at least reduce topographic effects in remote sensing imageries by using various standard methodological algorithms. The background and the topographic correction model have been reviewed in former studies. However
several effective topographic correction models
which have high quality and have been newly developed during these years
have not been mentioned and recommended comprehensively. Therefore
topographic correction models and evaluation methods for optical remote sensing imageries from the presented research chain were reviewed comprehensively in this paper. The aim was to determine the potential effective solutions for topographic effect correction over rugged terrains. This study is important for quantitative remote sensing applications in mountainous areas.
Topographic correction models have been explored for more than 30 years (Fig. 1). These models can be divided into three categories
namely
the regression model
the Lambertian-based model
and the non-Lambertian-based model. The regression model generally has obvious advantages of simplified formulation and easy operation. However
this model has the shortage of lack of physical meaning for empirical parameters. The Lambertian-based model has rigorous mathematical formulas
which have clear physical meaning for parameters and are easy to operate for reducing complex topographic effects. Meanwhile
the Lambertian models are built on the basis of several assumptions and have the obvious shortage of ignoring the non-Lambertian surface reflectance. This negligence may result in overcorrection
especially over shady surfaces. The non-Lambertian model can improve the performance of the Lambertian-based model
especially over heterogeneous land surfaces.
On the basis of this study
we summarized the problems in existing topographic correction model and provided several possible suggestions for the development of a topographic correction model in optical remote sensing. These suggestions can provide important guidance to the research on topographic correction and its practical application.
遥感图像处理朗伯体假设模型非朗伯体假设模型地表反射率地形校正评价
remote sensingimage processionLambertian based modelNon-Lambertian modelland surface reflectancetopographic correction assessment
Adhikari H, Heiskanen J, Maeda E E and Pellikka P K E. 2016. The effect of topographic normalization on fractional tree cover mapping in tropical mountains: an assessment based on seasonal Landsat time series. International Journal of Applied Earth Observation and Geoinformation, 52: 20-31 [DOI: 10.1016/j.jag.2016.05.008http://dx.doi.org/10.1016/j.jag.2016.05.008]
Balthazar V, Vanacker V and Lambin E F. 2012. Evaluation and parameterization of ATCOR3 topographic correction method for forest cover mapping in mountain areas. International Journal of Applied Earth Observation and Geoinformation, 18: 436-450 [DOI: 10.1016/j.jag.2012.03.010http://dx.doi.org/10.1016/j.jag.2012.03.010]
Bishop M P and Colby J D. 2011. Topographic Normalization of Multispectral Satellite Imagery. Dordrecht: Springer [DOI: 10.1007/978-90-481-2642-2_664http://dx.doi.org/10.1007/978-90-481-2642-2_664]
Chander G, Markham B L and Helder D L. 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5): 893-903 [DOI: 10.1016/j.rse.2009.01.007http://dx.doi.org/10.1016/j.rse.2009.01.007]
Chen J S. 1964. The spatial variation and distribution of surface reflectance over China. Acta Geographica Sinica, 30(2): 85-93
陈建绥. 1964. 中国地表反射率的分布及变化. 地理学报, 30(2): 85-93 [DOI: 10.11821/xb196402001http://dx.doi.org/10.11821/xb196402001]
Civco D L. 1989. Topographic normalization of Landsat Thematic Mapper digital imagery. Photogrammetric Engineering and Remote Sensing, 55(9): 1303-1309 [DOI: 10.1084/jem.158.3.767http://dx.doi.org/10.1084/jem.158.3.767]
Colby J D. 1991. Topographic normalization in rugged terrain. Photogrammetric Engineering and Remote Sensing, 57(5): 531-537
Colby J D and Keating P L. 1998. Land cover classification using Landsat TM imagery in the tropical highlands: the influence of anisotropic reflectance. International Journal of Remote Sensing, 19(8): 1479-1500 [DOI: 10.1080/014311698215306http://dx.doi.org/10.1080/014311698215306]
Conese C, Gilabert M A, Maselli F and Bottai L. 1993. Topographic normalization of TM scenes through the use of an atmospheric correction method and digital terrain models. Photogrammetric Engineering and Remote Sensing, 59(12): 1745-1753 [DOI: 10.1007/ BF00125134http://dx.doi.org/10.1007/BF00125134]
Dawn S, Saxena V and Sharma B. 2010. Remote sensing image registration techniques: a survey//Proceedings of the 4th International Conference on Image and Signal Processing. Trois-Rivières, QC, Canada: Springer: 103-112 [DOI: 10.1007/978-3-642-13681-8_13http://dx.doi.org/10.1007/978-3-642-13681-8_13]
Dozier J and Frew J. 1981. Atmospheric corrections to satellite radiometric data over rugged terrain. Remote Sensing of Environment, 11: 191-205 [DOI: 10.1016/0034-4257(81)90019-5http://dx.doi.org/10.1016/0034-4257(81)90019-5]
Dozier J and Frew J. 1990. Rapid calculation of terrain parameters for radiation modeling from digital elevation data. IEEE Transactions on Geoscience and Remote Sensing, 28(5): 963-969 [DOI: 10.1109/36.58986http://dx.doi.org/10.1109/36.58986]
Dozier J and Outcalt S I. 1979. An approach toward energy balance simulation over rugged terrain. Geographical Analysis, 11(1): 65-85 [DOI: 10.1111/j.1538-4632.1979.tb00673.xhttp://dx.doi.org/10.1111/j.1538-4632.1979.tb00673.x]
Duan S B and Yan G J. 2007. A review of models for topographic correction of remotely sensed images in mountainous area. Journal of Beijing Normal University (Natural Science), 43(4): 362-366
段四波, 阎广建. 2007. 山区遥感图像地形校正模型研究综述. 北京师范大学学报(自然科学版), 43(3): 362-366 [DOI: 10.3321/j.issn:0476 -0301.2007.03.025http://dx.doi.org/10.3321/j.issn:0476-0301.2007.03.025]
Duguay C R and LeDrew E F. 1992. Estimating surface reflectance and albedo from landsat-5 thematic mapper over rugged terrain. Photogrammetric Engineering and Remote Sensing, 58(5): 551-558
Dymond J R and Shepherd J D. 1999. Correction of the topographic effect in remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 37(5): 2618-2619 [DOI: 10.1109/36.789656http://dx.doi.org/10.1109/36.789656]
Ekstrand S. 1996. Landsat TM-based forest damage assessment: correction for topographic effects. Photogrammetric Engineering and Remote Sensing, 62(2): 151-162 [DOI: doi:10.1016/0031-0182 (95)00040-2http://dx.doi.org/doi:10.1016/0031-0182(95)00040-2]
Fan W L, Li J, Liu Q H, Zhang Q, Yin G F, Li A N, Zeng Y L, Xu B D, Xu X J, Zhou G M and Du H Q. 2018. Topographic correction of forest image data based on the canopy reflectance model for sloping terrains in multiple forward mode. Remote Sensing, 10(5): 717 [DOI: 10.3390 /rs10050717http://dx.doi.org/10.3390/rs10050717]
Fan Y C, Koukal T and Weisberg P J. 2014. A sun–crown–sensor model and adapted C-correction logic for topographic correction of high resolution forest imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 96: 94-105 [DOI: 10.1016/j.isprsjprs.2014.07.005http://dx.doi.org/10.1016/j.isprsjprs.2014.07.005]
Gao Y N and Zhang W C. 2009. A simple empirical topographic correction method for ETM+ imagery. International Journal of Remote Sensing, 30(9): 2259-2275 [DOI: 10.1080/014311608025 49336http://dx.doi.org/10.1080/01431160802549336]
Ge H L, Lu D S, He S Z, Xu A J, Zhou G M and Du H Q. 2008. Pixel-based minnaert correction method for reducing topographic effects on a landsat 7 ETM+ image. Photogrammetric Engineering and Remote Sensing, 74(11): 1343-1350 [DOI: 10.14358/pers.74.11.1343http://dx.doi.org/10.14358/pers.74.11.1343]
Ghasemi N, Mohammadzadeh A and Sahebi M R. 2013. Assessment of different topographic correction methods in ALOS AVNIR-2 data over a forest area. International Journal of Digital Earth, 6(5): 504-520 [DOI: 10.1080/17538947.2011.625049http://dx.doi.org/10.1080/17538947.2011.625049]
Goslee S C. 2012. Topographic corrections of satellite data for regional monitoring. Photogrammetric Engineering and Remote Sensing, 78(9): 973-981 [DOI: 10.14358/pers.78.9.973http://dx.doi.org/10.14358/pers.78.9.973]
Gu D G and Gillespie A. 1998. Topographic normalization of landsat TM images of forest based on subpixel Sun-canopy-sensor geometry. Remote Sensing of Environment, 64(2): 166-175 [DOI: 10.1016/s0034-4257(97)00177-6http://dx.doi.org/10.1016/s0034-4257(97)00177-6]
Hay J E. 1979. Calculation of monthly mean solar radiation for horizontal and inclined surfaces. Solar Energy, 23(4): 301-307 [DOI: 10.1016/0038-092x(79)90123-3http://dx.doi.org/10.1016/0038-092x(79)90123-3]
Hay J E and McKay D C. 1985. Estimating solar irradiance on inclined surfaces: a review and assessment of methodologies. International Journal of Solar Energy, 3(4/5): 203-240 [DOI: 10.1080/0142591850 8914395http://dx.doi.org/10.1080/01425918508914395]
Holben B N and Justice C O. 1980. The topographic effect on spectral response from nadir-pointing sensors. Photogrammetric Engineering and Remote Sensing, 46(9): 1191-1200 [DOI: 10.1016/0031-8663(80) 90017-4http://dx.doi.org/10.1016/0031-8663(80)90017-4]
Huang W, Zhang L P and Li P X. 2005. An improved topographic correction approach for satellite image. Journal of Image and Graphics, 10(9): 1124-1128
黄薇, 张良培, 李平湘. 2005. 一种改进的卫星影像地形校正算法. 中国图象图形学报, 10(9): 1124-1128 [DOI: 10.11834/jig.200509205http://dx.doi.org/10.11834/jig.200509205]
Huang W, Zhang L P and Li P X. 2006. A topographic correction approach for radiation of RS images by using spatial context information. Acta Geodaetica Et Cartographica Sinica, 35(3): 285-290
黄薇, 张良培, 李平湘. 2006. 一种顾及空间相关性遥感影像辐射度的地形校正算法. 测绘学报, 35(3): 285-290 [DOI: 10.3321/ j.issn:1001-1595.2006.03.017http://dx.doi.org/10.3321/j.issn:1001-1595.2006.03.017]
Itten K I and Meyer P. 1993. Geometric and radiometric correction of TM data of mountainous forested areas. IEEE Transactions on Geoscience and Remote Sensing, 31(4): 764-770 [DOI: 10.1109 /36.239898http://dx.doi.org/10.1109/36.239898]
Jiang K,Hu C M,Yu K and Zhao Y C. 2014. Landsat TM/ETM + topographic correction method based on smoothed terrain and semi-empirical model. Journal of Remote Sensing,18(2) : 287- 306
姜亢,胡昌苗,于凯,赵永超. 2014. 地形抹平与半经验模型的Landsat TM/ETM + 地形校正方法. 遥感学报,18(2): 287-306 [DOI: 10.11834/jrs.20143258http://dx.doi.org/10.11834/jrs.20143258]
Kobayashi S and Sanga-Ngoie K. 2008. The integrated radiometric correction of optical remote sensing imageries. International Journal of Remote Sensing, 29(20): 5957-5985 [DOI: 10.1080/014311607018 81889http://dx.doi.org/10.1080/01431160701881889]
Kondratyev K J and Manolova M P. 1960. The radiation balance of slopes. Solar Energy, 4(1): 14-19 [DOI: 10.1016/0038-092X (60)90041-4http://dx.doi.org/10.1016/0038-092X(60)90041-4]
Lenot X, Achard V and Poutier L. 2009. SIERRA: a new approach to atmospheric and topographic corrections for hyperspectral imagery. Remote Sensing of Environment, 113(8): 1664-1677 [DOI: 10.1016/j.rse.2009.03.016http://dx.doi.org/10.1016/j.rse.2009.03.016]
Li F Q, Jupp D L B, Reddy S, Lymburner L, Mueller N, Tan P and Islam A. 2010. An evaluation of the use of atmospheric and brdf correction to standardize landsat data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(3): 257-270 [DOI: 10.1109/jstars.2010.2042281http://dx.doi.org/10.1109/jstars.2010.2042281]
Li F Q, Jupp D L B, Thankappan M, Lymburner L, Mueller N, Lewis A and Held A. 2012. A physics-based atmospheric and BRDF correction for Landsat data over mountainous terrain. Remote Sensing of Environment, 124: 756-770 [DOI: 10.1016/j.rse.2012.06.018http://dx.doi.org/10.1016/j.rse.2012.06.018]
Li H F, Xu L M, Shen H F and Zhang L P, 2016. A general variational framework considering cast shadows for the topographic correction of remote sensing imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 161-171 [DOI: 10.1016/j.isprsjprs.2016.03.021http://dx.doi.org/10.1016/j.isprsjprs.2016.03.021]
Liang S, Fang H and Chen M. 2001. Atmospheric correction of landsat ETM+ land surface imagery. I. Methods. IEEE Transactions on Geoscience and Remote Sensing, 39(11): 2490-2498 [DOI: 10.1109/36.964986http://dx.doi.org/10.1109/36.964986]
Liang S L, Lewis P, Dubayah R, Qin W H and Shirey D. 1997. Topographic effects on surface bidirectional reflectance scaling. Journal of Remote Sensing, 1(S1): 90-93, 101
Liang S L, Fang H L, Morisette J T, Chen M Z, Shuey C J, Walthall C L and Daughtry C S T. 2002. Atmospheric correction of landsat ETM+ land surface imagery. II: validation and applications. IEEE Transactions on Geoscience and Remote Sensing, 40(12): 2736-2746 [DOI: 10.1109/TGRS.2002.807579http://dx.doi.org/10.1109/TGRS.2002.807579]
Lin Q N, Huang H G, Chen L and Chen E X. 2017. Topographic correction method for steep mountain terrain images. Journal of Remote Sensing, 21(5): 776-784
林起楠, 黄华国, 陈玲, 陈尔学. 2017. 陡峭山区影像的半经验地形校正. 遥感学报, 21(5): 776-784 [DOI:10.11834/ jrs.20176384http://dx.doi.org/10.11834/jrs.20176384]
Meyer P, Itten K I, Kellenberger T, Sandmeier S and Sandmeier R. 1993. Radiometric corrections of topographically induced effects on landsat TM data in an alpine environment. ISPRS Journal of Photogrammetry and Remote Sensing, 48(4): 17-28 [DOI: 10.1016/0924-2716(93)90028-Lhttp://dx.doi.org/10.1016/0924-2716(93)90028-L]
Mishra V D, Sharma J K, Singh K K, Thakur N K and Kumar M. 2009. Assessment of different topographic corrections in AWiFS satellite imagery of Himalaya terrain. Journal of Earth System Science, 118(1): 11-26 [DOI: 10.1007/s12040-009-0002-0http://dx.doi.org/10.1007/s12040-009-0002-0]
Mousivand A, Verhoef W, Menenti M and Gorte B. 2015. Modeling top of atmosphere radiance over heterogeneous non-lambertian rugged terrain. Remote Sensing, 7(6): 8019-8044 [DOI: 10.3390/rs70608019http://dx.doi.org/10.3390/rs70608019]
Park S H, Jung H S, Choi J and Jeon S. 2017. A quantitative method to evaluate the performance of topographic correction models used to improve land cover identification. Advances in Space Research, 60(7): 1488-1503 [DOI: 10.1016/j.asr.2017.06.054http://dx.doi.org/10.1016/j.asr.2017.06.054]
Proy C, Tanré D and Deschamps P Y. 1989. Evaluation of topographic effects in remotely sensed data. Remote Sensing of Environment, 30(1): 21-32 [DOI: 10.1016/0034-4257(89)90044-8http://dx.doi.org/10.1016/0034-4257(89)90044-8]
Qi X Y and Tian Q J. 2007. Modification of atmospheric correction model and surface reflectance retrieval from TM imagery in rugged terrain. Remote Sensing Information, (4): 3-8 (亓雪勇, 田庆久. 2007. 山地TM遥感影像大气辐射校正模型改进及地表反射率反演. 遥感信息, (4): 3-8) [10.3969/j.issn.1000-3177.2007.04.001]
Rahman H, Pinty B and Verstraete M M. 1993. Coupled surface-atmosphere reflectance (CSAR) model: 2.semiempirical surface model usable with NOAA advanced very high resolution radiometer data. Journal of Geophysical Research, 98(D11): 20791-20801 [DOI: 10.1029/93jd02072http://dx.doi.org/10.1029/93jd02072]
Reeder D H. 2002. Topographic Correction of Satellite Images: Theory and Application. Hanover: Dartmouth College: 5123-5123
Riano D, Chuvieco E, Salas J and Aguado I. 2003. Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types (2003). IEEE Transactions on Geoscience and Remote Sensing, 41(5): 1056-1061 [DOI: 10.1109/TGRS.2003.811693http://dx.doi.org/10.1109/TGRS.2003.811693]
Richter R. 1997. Correction of atmospheric and topographic effects for high spatial resolution satellite imagery. International Journal of Remote Sensing, 18(5): 1099-1111 [DOI: 10.1080/0143116972 18593http://dx.doi.org/10.1080/014311697218593]
Richter R. 1998. Correction of satellite imagery over mountainous terrain. Applied Optics, 37(18): 4004-4015 [DOI: 10.1364/AO.37. 004004http://dx.doi.org/10.1364/AO.37.004004]
Richter R, Kellenberger T and Kaufmann H. 2009. Comparison of topographic correction methods. Remote Sensing, 1(3): 184-196 [DOI: 10.3390/rs1030184http://dx.doi.org/10.3390/rs1030184]
Richter R and Schläpfer D. 2002. Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: atmospheric/topographic correction. International Journal of Remote Sensing, 23(13): 2631-2649 [DOI: 10.1080/01431160110115834http://dx.doi.org/10.1080/01431160110115834]
Sandmeier S and Itten K I. 1997. A physically -based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain. IEEE Transactions on Geoscience and Remote Sensing, 35(3): 708-717 [DOI: 10.1109/36.581991http://dx.doi.org/10.1109/36.581991]
Sandmeier S, Meyer P and Itten K I. 1994. A shortwave radiation model for radiometric correction of optical satellite data in rugged terrain//Proceedings of 1994 IEEE International Geoscience and Remote Sensing Symposium. Pasadena, USA: IEEE: 53-57 [DOI: 10.1109/IGARSS.1994.399024http://dx.doi.org/10.1109/IGARSS.1994.399024]
Sandmeier S, Müller C, Hosgood B and Andreoli G. 1998. Physical mechanisms in hyperspectral BRDF data of grass and watercress. Remote Sensing of Environment, 66(2): 222-233 [DOI: 10.1016/s0034-4257(98)00060-1http://dx.doi.org/10.1016/s0034-4257(98)00060-1]
Schaaf C B, Li X W and Strahler A H. 1994. Topographic effects on bidirectional and hemispherical reflectances calculated with a geometric-optical canopy model. IEEE Transactions on Geoscience and Remote Sensing, 32(6): 1186-1193 [DOI: 10.1109/36.338367http://dx.doi.org/10.1109/36.338367]
Schaepman-Strub G, Schaepman M E, Martonchik J and Schaaf C. 2006. Whats in a satellite albedo product?//Proceedings of 2006 IEEE International Symposium on Geoscience and Remote Sensing. Denver, USA: IEEE: 2848-2852 [DOI: 10.1109/IGARSS.2006.732http://dx.doi.org/10.1109/IGARSS.2006.732]
Shepherd J D and Dymond J R. 2003. Correcting satellite imagery for the variance of reflectance and illumination with topography. International Journal of Remote Sensing, 24(17): 3503-3514 [DOI: 10.1080/01431160210154029http://dx.doi.org/10.1080/01431160210154029]
Smith J A, Lin T L and Ranson K J. 1980. The lambertian assumption and landsat data. Photogrammetric Engineering and Remote Sensing, 46(9): 1183-1189 [DOI: 10.1016/0031-0182(80)90065-6http://dx.doi.org/10.1016/0031-0182(80)90065-6]
Soenen S A, Peddle D R and Coburn C A. 2005. SCS+ C: a modified sun-canopy-sensor topographic correction in forested terrain. IEEE Transactions on Geoscience and Remote Sensing, 43(9): 2148-2159 [DOI: 10.1109/TGRS.2005.852480http://dx.doi.org/10.1109/TGRS.2005.852480]
Soenen S A, Peddle D R, Coburn C A, Hall R J and Hall F G. 2008. Improved topographic correction of forest image data using a 3‐D canopy reflectance model in multiple forward mode. International Journal of Remote Sensing, 29(4): 1007-1027 [DOI: 10.1080/01431160701311291http://dx.doi.org/10.1080/01431160701311291]
Sola I, González-Audícana M and Álvarez-Mozos J. 2016. Multi-criteria evaluation of topographic correction methods. Remote Sensing of Environment, 184: 247-262 [DOI: 10.1016/j.rse.2016.07.002http://dx.doi.org/10.1016/j.rse.2016.07.002]
Teillet P M, Guindon B and Goodenough D G. 1982. On the slope-aspect correction of multispectral scanner data. Canadian Journal of Remote Sensing, 8(2): 84-106 [DOI: 10.1080/0703899 2.1982.10855028http://dx.doi.org/10.1080/07038992.1982.10855028]
Temps R C and Coulson K L. 1977. Solar radiation incident upon slopes of different orientations. Solar Energy, 19(2): 179-184 [DOI: 10.1016/0038-092x(77)90056-1http://dx.doi.org/10.1016/0038-092x(77)90056-1]
Vanonckelen S, Lhermitte S and van Rompaey A. 2013. The effect of atmospheric and topographic correction methods on land cover classification accuracy. International Journal of Applied Earth Observation and Geoinformation, 24: 9-21 [DOI: 10.1016/j.jag.20 13.02.003http://dx.doi.org/10.1016/j.jag.2013.02.003]
Vanonckelen S, Lhermitte S and van Rompaey A. 2015. The effect of atmospheric and topographic correction on pixel-based image composites: improved forest cover detection in mountain environments. International Journal of Applied Earth Observation and Geoinformation, 35: 320-328 [DOI: 10.1016/j.jag.2014.10.006http://dx.doi.org/10.1016/j.jag.2014.10.006]
Vincini M, Reeder D and Frazzi E. 2002. An empirical topographic normalization method for forest TM data//Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Toronto, Ontario, Canada: IEEE: 2091-2093 [DOI: 10.1109/IGARSS. 2002. 1026454http://dx.doi.org/10.1109/IGARSS.2002.1026454]
Wen J G, Liu Q H and Xiao Q. 2007. Assessment of different topographic correction methods and validation, Journal of Beijing Normal University (Natural Science), 43(3),255-263
闻建光,柳钦火,肖青. 2007.基于模拟数据分析地形校正模型效果及检验, 43(3), 255-263 [DOI: CNKI:SUN:BSDZ.0.2007-03-007http://dx.doi.org/CNKI:SUN:BSDZ.0.2007-03-007]
Wen J G. 2008. Study on Retrieval of Land Surface BRDF/Albedo and its Scale Effects in Complex Terrain. Beijing: Remote Sensing Chinese Academic of Science
闻建光. 2008. 复杂地形条件下地表BRDF/反照率遥感反演与尺度效应研究. 北京: 中国科学院遥感应用研究所
Wen J G, Liu Q, Tang Y, Dou B C, You D Q, Xiao Q, Liu Q H and Li X W. 2015. Modeling land surface reflectance coupled BRDF for HJ-1/CCD data of rugged terrain in Heihe River Basin, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(4): 1506-1518 [DOI: 10.1109/JSTARS.2015.2416254http://dx.doi.org/10.1109/JSTARS.2015.2416254]
Wen J G, Liu Q H, Liu Q, Xiao Q and Li X W. 2009. Parametrized BRDF for atmospheric and topographic correction and albedo estimation in Jiangxi rugged terrain, China. International Journal of Remote Sensing, 30(11): 2875-2896 [DOI: 10.1080/01431160 802558618http://dx.doi.org/10.1080/01431160802558618]
Wen J G, Liu Q, Liu Q H, Xiao Q and Li X W. 2015. Land Surface BRDF/Albedo Modeling and Retrieval. Beijing: Science Press
闻建光, 刘强, 柳钦火, 肖青, 李小文. 2015. 陆表二向反射特性遥感建模及反照率反演. 北京: 科学出版社
Wen J G, Liu Q, Xiao Q, Liu Q H, You D Q, Hao D L, Wu S B and Lin X W. 2018. Characterizing land surface anisotropic reflectance over rugged terrain: a review of concepts and recent developments. Remote Sensing, 10(3): 370 [DOI: 10.3390/rs10030370http://dx.doi.org/10.3390/rs10030370]
Yan G J, Tong Y Y, Yan K, Mu X H, Chu Q, Zhou Y J, Liu Y N, Qi J B, Li L Y, Zeng Y L, Zhou H M, Xie D H and Zhang W M. 2018. Temporal extrapolation of daily downward shortwave radiation over cloud-free rugged terrains. part 1: analysis of topographic effects. IEEE Transactions on Geoscience and Remote Sensing, 56(11): 6375-6394 [DOI: 10.1109/TGRS.2018.2838143http://dx.doi.org/10.1109/TGRS.2018.2838143]
Yin G F, Li A N, Wu S B, Fan W L, Zeng Y L, Yan K, Xu B D, Li J and Liu Q H. 2018. PLC: a simple and semi-physical topographic correction method for vegetation canopies based on path length correction. Remote Sensing of Environment, 215: 184-198 [DOI: 10.1016/j.rse.2018.06.009http://dx.doi.org/10.1016/j.rse.2018.06.009]
Yin G F, Li A N, Zhao W, Jin H A, Bian J H and Wu S B. 2017. Modeling canopy reflectance over sloping terrain based on path length correction. IEEE Transactions on Geoscience and Remote Sensing, 55(8): 4597-4609 [DOI: 10.1109/TGRS.2017.2694483http://dx.doi.org/10.1109/TGRS.2017.2694483]
Yu K, Liu S H and Zhao Y C. 2016. CPBAC: a quick atmospheric correction method using the topographic information. Remote Sensing of Environment, 186: 262-274 [DOI: 10.1016/j.rse.2016.08.010http://dx.doi.org/10.1016/j.rse.2016.08.010]
Zhang W C, Zhu Y F, Qin Z H and Fu C B. 2005. Auto-retrieval of surface reflectance and albedo from landsat TM/+ETM over rugged terrain with an advanced atmospheric correction algorithm//Proceedings of 2005 IEEE International Geoscience and Remote Sensing Symposium. Seoul, South Korea: IEEE: 4172-4176 [DOI: 10.1109/IGARSS.2005.1525836http://dx.doi.org/10.1109/IGARSS.2005.1525836]
Zhang W C and Gao Y N. 2011. Topographic correction algorithm for remotely sensed data accounting for indirect irradiance, International Journal of Remote Sensing, 32:7, 1807-1824 [DOI: 10.1080/01431 161003623441http://dx.doi.org/10.1080/01431161003623441]
Zhang Y L, Bai Y L and Li C H. 2014. Topographic normalization of landsat TM images in rugged terrain//Proceedings of the 2014 7th International Congress on Image and Signal Processing. Dalian, China: IEEE: 580-585 [DOI: 10.1109/CISP.2014.7003846http://dx.doi.org/10.1109/CISP.2014.7003846]
Zhang Y L, Li X, Wen J G, Liu Q H and Yan G L. 2015. Improved topographic normalization for landsat TM images by introducing the MODIS surface BRDF. Remote Sensing, 7(6): 6558-6575 [DOI: 10.3390/rs70606558http://dx.doi.org/10.3390/rs70606558]
相关作者
相关机构