高分五号可见短波红外高光谱相机设计与研制
Development of visible and short-wave infrared hyperspectral imager onboard GF-5 satellite
- 2020年24卷第4期 页码:333-344
收稿:2019-06-26,
纸质出版:2020-04-07
DOI: 10.11834/jrs.20209196
移动端阅览
收稿:2019-06-26,
纸质出版:2020-04-07
移动端阅览
本文介绍了高分五号(GF-5)卫星上的主载荷之一 —可见短波红外高光谱相机AHSI(the Advanced Hyperspectral Imager)的基本结构、成像原理、系统组成、关键技术和系统性能。该相机是国际上首个采用改进型Offner结构凸面光栅分光的星载高光谱相机,具有60 km的幅宽、30 m的空间分辨率和5/10 nm的光谱分辨率,同时获取地表地物在400—2500 nm范围内330个谱段的空间、辐射与光谱信息,具有突出的地物探测和识别能力。相比国际上经典的高光谱相机Hyperion,该相机幅宽提高8倍,谱段数增加近百个,信噪比提升近4倍;与德国、日本、意大利、印度等国际上当前发展的高光谱相机比较,该相机在幅宽和光谱通道数等方面具有明显优势,其综合性能处于国际领先水平。
Hyperspectral imaging technology provides high spectral resolution information of objects on the Earth. Hyperion and Compact High-Resolution Imaging Spectrometer have been the main sources of spaceborne hyperspectral data in the past few decades. However
the quality and quantity of the data cannot totally meet the challenging requirements of various applications. In this study
we design and present a visible and short-wave infrared hyperspectral imager called the Advanced Hyperspectral Imager (AHSI)
which is one of the six payloads on China's GF-5 satellite launched on May 9
2018. It is the first spaceborne hyperspectral sensor that utilizes convex grating spectrophotometry and an improved three concentric-mirror (Offner) configuration. We introduce the basic structure and imaging principle of AHSI.
Ground object lights are reflected into an off-axis three-mirror telescope using pointing mirror. The lights are focused on a Field Of View (FOV) separator and then split into two parts. One part enters a visible/near-infrared (VNIR) spectrometer
and the other goes into a short-wave infrared (SWIR) spectrometer. Compound light is dispersed into a series of monochromatic light through convex grating and focused on a detector using a mirror with an improved Offner structure. A VNIR detector is a back-illuminated frame transfer charge-coupled device with a size of 2048×300 pixels. A SWIR detector is a HgCdTe focal plane cooled at 110 K
and has a size of 2048×512 pixels formed by four infrared focal plane arrays of the same size (512×512)
with a staggering spatial arrangement. During calibration
sunlight is reflected into an optical system using a diffuse reflectance panel. The absolute radiation response of AHSI is calibrated with a solar diffuse reflection signal
and the degradation of the diffuse reflectance panel is corrected with a ratioing radiometer. The central wavelength and bandwidth are calibrated with onboard LED calibration component and solar atmospheric absorption profile
respectively (O
2
adsorption peaks at 760 and 1260 nm).
The main performance metrics of the AHSI are obtained and validated via well-designed on-orbit experiments. It has a spectral range of 400–2500 nm
with spectral resolutions of higher than 5 nm in the VNIR and 10 nm in the SWIR
respectively. The swath width is 60 km
and the spatial resolution is 30 m. Compared with Hyperion
which is a classical hyperspectral instrument
the imaging width of the AHSI is superior (eight times)
the number of spectral bands has increased by hundreds
and the Signal-to-Noise Ratio (SNR) has improved by four times. Compared with the instruments recently developed/planned by Germany
Italy
Indian
and Japan
the AHSI has competitive performance and has evident advantages in terms of swath width and number of spectral channels. The AHSI has achieved the widest swath width and broadest spectral range to shorten the revisit time
improve the observation and monitoring efficiency
and refine the Earth’s observation.
As one of the six main payloads on GF-5 satellite
the AHSI demonstrates the development of spaceborne hyperspectral imaging technology in China. It features a large FOV telescope
a low-distortion large flat-field fine spectrometer
a large-size infrared focal plane detector
a long-life large cooling capacity cryocooler
a high-precision calibration system
and a high-precision image compensation mechanism. The AHSI has outstanding capability of detecting and identifying ground objects
making it suitable to precision applications
such as ecological environment monitoring
land and resource survey
and oil/gas exploration.
Barnsley M J , Settle J J , Cutter M A , Lobb D R and Teston F . 2004 . The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere . IEEE Transactions on Geoscience and Remote Sensing , 42 ( 7 ): 1512 - 1520 [ DOI: 10.1109/TGRS.2004.827260 http://dx.doi.org/10.1109/TGRS.2004.827260 ]
Ben-Dor E , Chabrillat S , Demattê J A M , Taylor G R , Hill J , Whiting M L and Sommer S . 2009 . Using Imaging Spectroscopy to study soil properties . Remote Sensing of Environment , 113 Suppl 1 : S38 - S55 [ DOI: 10.1016/j.rse.2008.09.019 http://dx.doi.org/10.1016/j.rse.2008.09.019 ]
Bommena R , Bergeson J D , Kodama R , Zhao J , Ketharanathan S , Schaake H , Shih H , Velicu S , Aqariden F , Wijewarnasuriya P S and Dhar N K . 2014 . High-performance SWIR HgCdTe FPA development on silicon substrate // Proceedings of the SPIE 9070 , Infrared Technology and Applications XL. Baltimore : SPIE : 907009 [DOI: 10.1117/12.2053020]
Briottet X , Marion R , Carrere V , Jacquemoud S , Chevrel S , Prastault P , D'oria M and Gilouppe P . 2011 . HYPXIM: a new Hyperspectral sensor combining science/defence applications // Proceedings of the 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing . Lisbon : IEEE : 1 - 4 [DOI: 10.1109/WHISPERS.2011.6080957]
CEOS . 2012 . CEOS EO handbook-instrument index [EB/OL]. http://database.eohandbook.com/database/instrumentindex http://database.eohandbook.com/database/instrumentindex [ 2019-06-26 ]. aspx#H
Cutter M A and Haskell L . 2007 . The CHRIS hyperspectral instrument & PROBA-1/Chris mission // Proceedings of ‘Envisat Symposium 2007’ . Montreux : ESA SP
Dierickx B , Dupont B , Jerram P , Fryer M , Pratlong J , Walker A and Defernez A . 2009 . CMOS Synchronous shutter backside illuminated image sensor for Hyperspectral imaging //Proceedings of International Image Sensors Workshop. Bergen: [s.n.]: 25-28
Giardino C , Brando V E , Dekker A G , Strömbeck N and Candiani G . 2007 . Assessment of water quality in Lake Garda (Italy) using Hyperion . Remote Sensing of Environment , 109 ( 2 ): 183 - 195 [ DOI: 10.1016/j.rse.2006.12.017 http://dx.doi.org/10.1016/j.rse.2006.12.017 ]
Guanter L , Kaufmann H , Segl K , Foerster S , Rogass C , Chabrillat S , Kuester T , Hollstein A , Rossner G , Chlebek C , Straif C , Fischer S , Schrader S , Storch T , Heiden U , Mueller A , Bachmann M , Mühle H , Müller R , Habermeyer M , Ohndorf A , Hill J , Buddenbaum H , Hostert P , van der Linden S , Leitão P J , Rabe A , Doerffer R , Krasemann H , Xi H Y , Mauser W , Hank T , Locherer M , Rast M , Staenz K and Sang B . 2015 . The EnMAP Spaceborne imaging spectroscopy mission for Earth Observation . Remote Sensing , 7 ( 7 ): 8830 - 8857 [ DOI: 10.3390/rs70708830 http://dx.doi.org/10.3390/rs70708830 ]
Hu B L , Sun D X and Liu Y N . 2018b . A Novel method to remove fringes for dispersive hyperspectral VNIR imagers using back-illuminated CCDs . Remote Sensing , 10 ( 1 ): 79 [ DOI: 10.3390/rs10010079 http://dx.doi.org/10.3390/rs10010079 ]
Hu B L , Zhang J , Cao K Q , Hao S J , Sun D X and Liu Y N . 2018a . Research on the Etalon effect in dispersive hyperspectral VNIR imagers using back-illuminated CCDs . IEEE Transactions on Geoscience and Remote Sensing , 56 ( 9 ): 5481 - 5494 [ DOI: 10.1109/TGRS.2018.2818258 http://dx.doi.org/10.1109/TGRS.2018.2818258 ]
Hu X N , Huang A B , Liao Q J , Chen L , Chen X , Fan H , Chen H L , Ding R J , He L , Sun D X and Liu Y N . 2017 . Large format high SNR SWIR HgCdTe/Si FPA with multiple-choice gain for hyperspectral detection // Proceedings of the SPIE 10213 , Hyperspectral Imaging Sensors : Innovative Applications and Sensor Standards 2017 . Anaheim: SPIE : 102130E [DOI: 10.1117/12.2262912]
HySIS . 2018 . https://space.skyrocket.de/doc_sdat/hysis.htm[2019-06-26]
Krishna G , Sahoo R N , Pradhan S , Ahmad T and Sahoo P M . 2018 . Hyperspectral satellite data analysis for pure pixels extraction and evaluation of advanced classifier algorithms for LULC classification . Earth Science Informatics , 11 ( 12 ): 159 - 170 [ DOI: 10.1007/s12145-017-0324-4 http://dx.doi.org/10.1007/s12145-017-0324-4 ]
Krutz D , Venus H , Eckardt A , Walter I , Sebastian I , Reulke R , Günther B , Zender B , Arloth S , Williges C , Lieder M , Neidhardt M , Grote U , Schrandt F and Wojtkowiak A . 2018 . DESIS - DLR earth sensing imaging spectrometer // Proceedings of PSIVT 2017 International Workshops on Image and Video Technology . Wuhan : Springer : 356 - 368 [DOI: 10.1007/978-3-319-92753-4_28]
Lindsay D , Bangs J W , Vampola J , Jaworski F , Mears L , Wyles R , Asbrock J , Norton E , Reddy M , Rybnicek K , Levy A and Malone N R . 2011 . Large format high operability low cost infrared focal plane array performance and capabilities // Proceedings of the SPIE 8154 , Infrared Remote Sensing and Instrumentation XIX. San Diego : SPIE : 81540 S [ DOI: 10.1117/12.898349 http://dx.doi.org/10.1117/12.898349 ]
Liu Y N , Ding X Z and Li Z Z . 2015 . Specification design of hyperspectral imaging remote sensor used in geosciences . Earth Science , 40 ( 8 ): 1295 - 1300
刘银年 , 丁学专 , 李志忠 . 2015 . 面向地学应用的高光谱遥感器指标体系设计 . 地球科学 , 40 ( 8 ): 1295-1300 [ DOI: 10.3799/dqkx.2015.109 http://dx.doi.org/10.3799/dqkx.2015.109 ]
Loizzo R , Guarini R , Longo F , Scopa T , Formaro R , Facchinetti C and Varacalli G . 2018 . PRISMA: the Italian Hyperspectral mission // Proceedings of IGARSS 2018- 2018 IEEE International Geoscience and Remote Sensing Symposium . Valencia : IEEE : 175 - 178 [DOI: 10.1109/IGARSS.2018.8518512]
Ma G X , Xue Y Q and Li G F . 2008 . Satellite remote sensing for haze monitoring in Pearl River delta region . Science and Technology Review , 26 ( 16 ): 72 - 76
马国欣 , 薛永祺 , 李高丰 . 2008 . 珠江三角洲地区的灰霾监控与卫星遥感 . 科技导报 , 26 ( 16 ): 72-76 [ DOI: 10.3321/j.issn:1000-7857.2008.16.016 http://dx.doi.org/10.3321/j.issn:1000-7857.2008.16.016 ]
Matsunaga T , Iwasaki A , Tsuchida S , Iwao K , Tanii J , Kashimura O , Nakamura R , Yamamoto H , Kato S , Mouri K , Tachikawa T and Moriyama M . 2016 . Current status of hyperspectral imager suite (HISUI) and its deployment plan on International Space Station // Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium . Beijing : IEEE : 257 - 260 [DOI: 10.1109/IGARSS.2016.7729058]
Middleton E M , Ungar S G , Mandl D J , Ong L , Frye S W , Campbell P E , Landis D R , Young J P and Pollack N H . 2013 . The Earth Observing One (EO-1) satellite mission: over a decade in space . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 6 ( 2 ): 243 - 256 [ DOI: 10.1109/JSTARS.2013.2249496 http://dx.doi.org/10.1109/JSTARS.2013.2249496 ]
Mielke C , Boesche N K , Rogass C , Kaufmann H , Gauert C and de Wit M . 2014 . Spaceborne mine waste mineralogy monitoring in South Africa, applications for modern push-broom Missions: hyperion/OLI and EnMAP/sentinel-2 . Remote Sensing , 6 ( 8 ): 6790 - 6816 [ DOI: 10.3390/rs6086790 http://dx.doi.org/10.3390/rs6086790 ]
Nink S , Hill J , Buddenbaum H , Stoffels J , Sachtleber T and Langshausen J . 2015 . Assessing the suitability of future multi- and Hyperspectral satellite systems for mapping the spatial distribution of Norway spruce timber volume . Remote Sensing , 7 ( 9 ): 12009-1204 0 [ DOI: 10.3390/rs70912009 http://dx.doi.org/10.3390/rs70912009 ]
Park J H , Pepping J , Mukhortova A , Ketharanathan S , Kodama R , Zhao J , Hansel D , Velicu S and Aqariden F . 2016 . Development of high-performance eSWIR HgCdTe-based focal-plane arrays on silicon substrates . Journal of Electronic Materials , 45 ( 9 ): 4620 - 4625 [ DOI: 10.1007/s11664-016-4717-9 http://dx.doi.org/10.1007/s11664-016-4717-9 ]
Pearlman J S , Barry P S , Segal C C , Shepanski J , Beiso D and Carman S L . 2003 . Hyperion, a space-based imaging spectrometer . IEEE Transactions on Geoscience and Remote Sensing , 41 ( 6 ): 1160 - 1173 [ DOI: 10.1109/TGRS.2003.815018 http://dx.doi.org/10.1109/TGRS.2003.815018 ]
Peón J , Recondo C , Fernández S , Calleja J F , De Miguel E and Carretero L . 2017 . Prediction of topsoil organic carbon using airborne and satellite Hyperspectral imagery . Remote Sensing , 9 ( 12 ): 1211 [ DOI: 10.3390/rs9121211 http://dx.doi.org/10.3390/rs9121211 ]
Nowicki-Bringuier Y R and Chorier P . 2009 . Sofradir SWIR hyperspectral detectors for space applications // Proceedings of the SPIE 7474 , Sensors, Systems, and Next-Generation Satellites XIII. Berlin : SPIE : 747417 [DOI: 10.1117/12.830721]
Staenz K and Held A . 2012 . Summary of current and future terrestrial civilian Hyperspectral Spaceborne systems // Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium . Munich : IEEE : 123 - 126 [DOI: 10.1109/IGARSS.2012.6351621]
Stuffler T , Kaufmann C , Hofer S , Förster K P , Schreier G , Mueller A , Eckardt A , Bach H , Penné B , Benz U and Haydn R . 2007 . The EnMAP hyperspectral imager-An advanced optical payload for future applications in Earth observation programmes . Acta Astronautica , 61 ( 1-6 ): 115 - 120 [ DOI: 10.1016/j.actaastro.2007.01.033 http://dx.doi.org/10.1016/j.actaastro.2007.01.033 ]
Tong Q X , Zhang B and Zhang L F . 2016 . Current progress of hyperspectral remote sensing in China . Journal of Remote Sensing , 20 ( 5 ): 689 - 707
童庆禧 , 张兵 , 张立福 . 2016 . 中国高光谱遥感的前沿进展 . 遥感学报 , 20 ( 5 ): 689-707 [ DOI: 10.11834/jrs.20166264 http://dx.doi.org/10.11834/jrs.20166264 ]
Van der Meer F D , van der Werff H M A , van Ruitenbeek F J A , Hecker C A , Bakker W H , Noomen M F , van der Meijde M , Carranza E J M , de Smeth J B and Woldai T . 2012 . Multi- and hyperspectral geologic remote sensing: a review . International Journal of Applied Earth Observation and Geoinformation , 14 ( 1 ): 112 - 128 [ DOI: 10.1016/j.jag.2011.08.002 http://dx.doi.org/10.1016/j.jag.2011.08.002 ]
Xiong X X , Sun J Q , Wu A S , Chiang K F , Esposito J and Barnes W . 2005 . Terra and aqua MODIS calibration algorithms and uncertainty analysis // Proceedings of the SPIE 5978 , Sensors, Systems, and Next-Generation Satellites IX. Bruges : SPIE : 5978 V [ DOI: 10.1117/12.627631 http://dx.doi.org/10.1117/12.627631 ]
Yilmaz O , Unses E , Ucan M , Buyuk H , Celebi M , Turk F , Kirik M S , Haliloglu O , Celik V , Ekinci M , Guven E , Yilmaz O , Acar D , Aydogdu M F , Olca M and Selimoglu O . 2015 . Current Situation on spaceborne hyperspectral imager of Tübıtak Uzay: HSK // Proceedings of the 2015 7th International Conference on Recent Advances in Space Technologies . Istanbul : IEEE : 223 - 227 [DOI: 10.1109/RAST.2015.7208345]
Zhang B . 2016 . Advancement of hyperspectral image processing and information extraction . Journal of Remote Sensing , 20 ( 5 ): 1062 - 1090
张兵 . 2016 . 高光谱图像处理与信息提取前沿 . 遥感学报 , 20 ( 5 ): 1062-1090 [ DOI: 10.11834/jrs.20166179 http://dx.doi.org/10.11834/jrs.20166179 ]
相关作者
相关机构
京公网安备11010802024621
