中亚地区植被对气候变化的响应机制初探
Response of vegetation to climate change in Central Asia with remote sensing and meteorological data
- 2022年26卷第11期 页码:2248-2267
纸质出版日期: 2022-11-07
DOI: 10.11834/jrs.20209216
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-11-07 ,
扫 描 看 全 文
吴林霖,王思远,马元旭,杨瑞霞,官云兰,海凯,刘卫华.2022.中亚地区植被对气候变化的响应机制初探.遥感学报,26(11): 2248-2267
Wu L L,Wang S Y,Ma Y X,Yang R X,Guan Y L,Hai K and Liu W H. 2022. Response of vegetation to climate change in Central Asia with remote sensing and meteorological data. National Remote Sensing Bulletin, 26(11):2248-2267
为了解气候变化对中亚干旱半干旱地区植被的潜在影响以及分析不同典型植被对气候因子的时间响应,应用2000年—2013年的MODIS-NDVI时间序列数据集与CHELSA气候再分析数据进行回归分析和时间序列相关分析,分别提取NDVI/降水/温度的空间格局及变化趋势、NDVI与降水/温度的线性相关关系与时间响应模式,再结合土地覆盖/利用类型与陆地生态分区数据了解典型植被以及不同生态分区NDVI对气候因子响应的相关性和差异性,进而帮助探讨中亚地区植被对气候变化的响应机制。研究结果表明:(1)中亚地区NDVI值普遍偏低,总体呈现出高海拔向低海拔减小趋势;降水空间分布总体呈东部到西部递减,且随着海拔降低降水量随之下降;温度由西部到东部递减,新疆则是由中部向外部递减。2000年—2013年间,中亚地区NDVI、降水与温度变化趋势存在显著地域差异。(2)NDVI与降水在大部分地区呈显著正相关关系,负相关的像元分布于中部、南部相对湿润的地区以及河流、湖泊沿岸;NDVI与温度在中亚东部、北部正相关关系显著,西部干旱与半干旱地区相关性较低,少部分为负相关。不同典型植被NDVI对降水和温度的相关性差异显著。(3)中亚大部分地区NDVI与降水之间存在32 d的滞后时长以及16—96 d不等的累积时长,NDVI对当期的温度相关性较高,存在16—48 d的累积时长;不同典型植被NDVI对降水的响应差异明显,对温度的响应除裸地外,其他植被类型对温度的时间响应基本一致。(4)不同生态分区NDVI对降水/温度的响应存在差异,森林区对降水的滞后时长与累积时长较长,高寒草甸区对降水滞后时长为96 d的像元占比为34.16%,对温度主要为16 d滞后时长和32 d累积时长。
This study aims to understand the potential effects of climate change on vegetation in arid and semi-arid areas of Central Asia and analyze the temporal responses of different typical vegetation to climate factors. The MODIS-NDVI dataset and CHELSA climate data were used for regression analysis and time-series correlation analysis
which extracted the spatial pattern and variation trend of NDVI
precipitation and temperature in the period of 2000 to 2013. Meanwhile
joint land use/cover type and terrestrial ecoregion to analyze the correlations of NDVI to climate factors for different vegetation types and different ecoregions could help explore the mechanism of vegetation response to climate change in Central Asia. The results showed that: (1) The NDVI values of Central Asia were generally low and exhibited a decreasing trend from high altitude to low altitude. The spatial distribution of precipitation decreased from the east to the west. The spatial distribution of temperature decreased from the west to the east in Central Asia. From 2000 to 2013
the spatial variation trend of NDVI
precipitation and temperature were the significant spatial differences in Central Asia. (2) There was a significant positive correlation between NDVI and precipitation in most areas. The negative correlation pixels between NDVI and precipitation were mainly distributed in the relatively humid areas in central and southern Central Asia and along the rivers and lakes. Meanwhile
a positive correlation between NDVI and temperature was found in eastern and northern Central Asia. The low correlation between NDVI and temperature mainly distributed in the arid and semi-arid regions
only a few areas were showed negative correlations. In addition
the correlation of NDVI between precipitation and temperature was significant in different vegetation types. (3) There was a lag time of 32 days and a cumulative time of 16-96 days between NDVI and precipitation in most parts of Central Asia. The correlation coefficient between NDVI and temperature of the current period was relatively high and the high correlation coefficients of the cumulative time were 16-48 days. The response of NDVI of different typical vegetation to precipitation is different
and the response of NDVI to temperature is generally similar with other vegetation types except for bare land. (4) The responses of NDVI to precipitation/temperature were different in different ecoregions. Among them
the longest lag time and cumulation time of precipitation in the forest were 96d. There were 34.16% pixels of alpine meadow showed the 96d lag times for the correlation of NDVI response to precipitation
the lag time and cumulation time of NDVI response to temperature were 16 d and 32 d.
NDVI气候响应中亚时间序列相关分析时间响应干旱半干旱地区
NDVIclimate responseCentral Asiatime-series correlation analysistemporal response mechanismarid and semi-arid areas
Bai J, Shi H, Yu Q, Xie Z Y, Li L H, Luo G P, Jin N and Li J. 2019. Satellite-observed vegetation stability in response to changes in climate and total water storage in Central Asia. Science of the Total Environment, 659: 862-871 [DOI: 10.1016/j.scitotenv.2018.12.418http://dx.doi.org/10.1016/j.scitotenv.2018.12.418]
Bai S Y, Wang L and Shi J Q. 2012. Time lag effect of NDVI response to climatic change in Yangtze River basin. Chinese Journal of Agrometeorology, 33(4): 579-586
白淑英, 王莉, 史建桥. 2012. 长江流域NDVI对气候变化响应的时滞效应. 中国农业气象, 33(4): 579-586 [DOI: 10.3969/j.issn.1000-6362.2012.04.016http://dx.doi.org/10.3969/j.issn.1000-6362.2012.04.016]
Barber V A, Juday G P and Finney B P. 2000. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature, 405(6787): 668-673 [DOI: 10.1038/35015049http://dx.doi.org/10.1038/35015049]
Bian J H, Li A N, Song M Q, Ma L Q and Jiang J G. 2010. Reconstruction of NDVI time-series datasets of MODIS based on Savitzky-Golay filter. National Remote Sensing Bulletin, 14(4): 725-741
边金虎, 李爱农, 宋孟强, 马利群, 蒋锦刚. 2010. MODIS植被指数时间序列Savitzky-Golay滤波算法重构. 遥感学报, 14(4): 725-741 [DOI: 10.11834/jrs.20100408http://dx.doi.org/10.11834/jrs.20100408]
Buslov M M, De Grave J, Bataleva E A V and Batalev V Y. 2007. Cenozoic tectonic and geodynamic evolution of the Kyrgyz Tien Shan Mountains: a review of geological, thermochronological and geophysical data. Journal of Asian Earth Sciences, 29(2/3): 205-214 [DOI: 10.1016/j.jseaes.2006.07.001http://dx.doi.org/10.1016/j.jseaes.2006.07.001]
Camberlin P, Martiny N, Philippon N and Richard Y. 2007. Determinants of the interannual relationships between remote sensed photosynthetic activity and rainfall in tropical Africa. Remote Sensing of Environment, 106(2): 199-216 [DOI: 10.1016/j.rse.2006.08.009http://dx.doi.org/10.1016/j.rse.2006.08.009]
Cao M K and Woodward F I. 1998. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393(6682): 249-252 [DOI: 10.1038/30460http://dx.doi.org/10.1038/30460]
Chen F H, Wang J S, Jin L Y, Zhang Q, Li J and Chen J H. 2009. Rapid warming in mid-latitude Central Asia for the past 100 years. Frontiers of Earth Science in China, 3(1): 42-50 [DOI: 10.1007/s11707-009-0013-9http://dx.doi.org/10.1007/s11707-009-0013-9]
Chen F J, Shen Y J, Hu Q L, Qi Y Q and Zhang Y C. 2011. Responses of NDVI to climate change in the Hai Basin. National Remote Sensing Bulletin, 15(2): 401-414
陈福军, 沈彦俊, 胡乔利, 齐永青, 张玉翠. 2011. 海河流域NDVI对气候变化的响应研究. 遥感学报, 15(2): 401-414 [DOI: 10.11834/jrs.20110270http://dx.doi.org/10.11834/jrs.20110270]
Chen J, Jönsson P, Tamura M, Gu Z H, Matsushita B and Eklundh L. 2004. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sensing of Environment, 91(3/4): 332-344 [DOI: 10.1016/j.rse.2004.03.014http://dx.doi.org/10.1016/j.rse.2004.03.014]
Chen T, Bao A M, Jiapaer G, Guo H, Zheng G X, Jiang L L, Chang C and Tuerhanjiang L. 2019. Disentangling the relative impacts of climate change and human activities on arid and semiarid grasslands in Central Asia during 1982—2015. Science of the Total Environment, 653: 1311-1325 [DOI: 10.1016/j.scitotenv.2018.11.058http://dx.doi.org/10.1016/j.scitotenv.2018.11.058]
Chen X M, Wu D, Huang X Z, Lv F Y, Brenner M, Jin H J and Chen F H. 2020. Vegetation response in subtropical Southwest China to rapid climate change during the Younger Dryas. Earth-Science Reviews, 201: 103080 [DOI: 10.1016/j.earscirev.2020.103080http://dx.doi.org/10.1016/j.earscirev.2020.103080]
Chen Y H, Li X B, Chen J and Shi P J. 2002. The change of NDVI time series based on change vector analysis in China, 1983-1992. Journal of Remote sensing, 6(1): 12-18
陈云浩, 李晓兵, 陈晋, 史培军. 2002. 1983—1992年中国陆地植被NDVI演变特征的变化矢量分析. 遥感学报, 6(1): 12-18 [DOI: 10.11834/jrs.20020103http://dx.doi.org/10.11834/jrs.20020103]
Chu H S, Venevsky S, Wu C and Wang M H. 2019. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015. Science of the Total Environment, 650: 2051-2062 [DOI: 10.1016/j.scitotenv.2018.09.115http://dx.doi.org/10.1016/j.scitotenv.2018.09.115]
Cowan P J. 2007. Geographic usage of the terms Middle Asia and Central Asia. Journal of Arid Environments, 69(2): 359-363 [DOI: 10.1016/j.jaridenv.2006.09.013http://dx.doi.org/10.1016/j.jaridenv.2006.09.013]
de Beurs K M, Henebry G M, Owsley B C and Sokolik I. 2015. Using multiple remote sensing perspectives to identify and attribute land surface dynamics in Central Asia 2001—2013. Remote Sensing of Environment, 170: 48-61 [DOI: 10.1016/j.rse.2015.08.018http://dx.doi.org/10.1016/j.rse.2015.08.018]
de Jong R, Verbesselt J, Schaepman M E and de Bruin S. 2012. Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Global Change Biology, 18(2): 642-655 [DOI: 10.1111/j.1365-2486.2011.02578.xhttp://dx.doi.org/10.1111/j.1365-2486.2011.02578.x]
Du J Q, Jiaerheng A, Zhao C X, Fang G L, Yin J Q, Xiang B, Yuan X J and Fang S F. 2015. Dynamic changes in vegetation NDVI from 1982 to 2012 and its responses to climate change and human activities in Xinjiang, China. Chinese Journal of Applied Ecology, 26(12): 3567-3578
杜加强, 贾尔恒·阿哈提, 赵晨曦, 方广玲, 阴俊齐, 香宝, 袁新杰, 房世峰. 2015. 1982—2012年新疆植被NDVI的动态变化及其对气候变化和人类活动的响应. 应用生态学报26(12): 3567-3578 [DOI: 10.13287/j.1001-9332.20150929.006http://dx.doi.org/10.13287/j.1001-9332.20150929.006]
Elvidge C D and Chen Z K. 1995. Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sensing of Environment, 54(1): 38-48 [DOI: 10.1016/0034-4257(95)00132-Khttp://dx.doi.org/10.1016/0034-4257(95)00132-K]
Epstein H E, Lauenroth W K, Burke I C and Coffin D P. 1997. Productivity patterns of C3 and C4 functional types in the U.S. Great Plains. Ecology, 78(3): 722-731 [DOI: 10.2307/2266052http://dx.doi.org/10.2307/2266052]
Eslamian S, Gilroy K L and McCuen R H. 2011. Climate change detection and modeling in hydrology//Blanco J ed. Climate Change-Research and Technology for Adaptation and Mitigation. Rijeka: InTechOpen: 87-100 [DOI: 10.5772/24550http://dx.doi.org/10.5772/24550]
Fan Z M, Fan B and Yue T X. 2019. Terrestrial ecosystem scenarios and their response to climate change in Eurasia. Science China: Earth Sciences, 62(10): 1607-1618
范泽孟, 范斌, 岳天祥. 2019. 欧亚大陆植被生态系统潜在分布情景及其对气候变化的响应. 中国科学: 地球科学, 49(11): 1817-1830 [DOI: 10.1007/s11430-018-9374-3http://dx.doi.org/10.1007/s11430-018-9374-3]
Gao J B, Jiao K W and Wu S H. 2019. Revealing the climatic impacts on spatial heterogeneity of NDVI in China during 1982—2013. Acta Geographica Sinica, 74(3): 534-543
高江波, 焦珂伟, 吴绍洪. 2019. 1982—2013年中国植被NDVI空间异质性的气候影响分析. 地理学报, 74(3): 534-543 [DOI: 10.11821/dlxb201903010http://dx.doi.org/10.11821/dlxb201903010]
Gessner U, Naeimi V, Klein I, Kuenzer C, Klein D and Dech S. 2013. The relationship between precipitation anomalies and satellite-derived vegetation activity in Central Asia. Global and Planetary Change, 110: 74-87 [DOI: 10.1016/j.gloplacha.2012.09.007http://dx.doi.org/10.1016/j.gloplacha.2012.09.007]
Gong D Y and He X Z. 2004. Impact of pathfinder AVHRR data error on the large-scale NDVI/Temperature coupling. National Remote Sensing Bulletin, 8(4): 349-355
龚道溢, 何学兆. 2004. 资料误差对大尺度NDVI-气温关系的影响. 遥感学报, 8(4): 349-355 [DOI: 10.11834/jrs.20040409http://dx.doi.org/10.11834/jrs.20040409]
Guo H, Bao A M, Ndayisaba F, Liu T, Jiapaer G, El-Tantawi A M and De Maeyer P. 2018. Space-time characterization of drought events and their impacts on vegetation in Central Asia. Journal of Hydrology, 564: 1165-1178 [DOI: 10.1016/j.jhydrol.2018.07.081http://dx.doi.org/10.1016/j.jhydrol.2018.07.081]
He B, Chen A F, Wang H L and Wang Q F. 2015. Dynamic response of satellite-derived vegetation growth to climate change in the three north shelter forest region in China. Remote Sensing, 7(8): 9998-10016 [DOI: 10.3390/rs70809998http://dx.doi.org/10.3390/rs70809998]
Holben B N. 1986. Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing, 7(11): 1417-1434 [DOI: 10.1080/01431168608948945http://dx.doi.org/10.1080/01431168608948945]
Holmgren M, Stapp P, Dickman C R, Gracia C, Graham S, Gutiérrez J R, Hice C, Jaksic F, Kelt D A, Letnic M, Lima M, López B C, Meserve P L, Milstead W B, Polis G A, Previtali M A, Richter M, Sabaté S and Squeo F A. 2006. Extreme climatic events shape arid and semiarid ecosystems. Frontiers in Ecology and the Environment, 4(2): 87-95 [DOI: 10.1890/1540-9295(2006)004http://dx.doi.org/10.1890/1540-9295(2006)004[0087:ECESAA]2.0.CO;2]
Huber S, Fensholt R and Rasmussen K. 2011. Water availability as the driver of vegetation dynamics in the African Sahel from 1982 to 2007. Global and Planetary Change, 76(3/4): 186-195 [DOI: 10.1016/j.gloplacha.2011.01.006http://dx.doi.org/10.1016/j.gloplacha.2011.01.006]
Huete A. 2016. Vegetation’s responses to climate variability. Nature, 531(7593): 181-182 [DOI: 10.1038/nature17301http://dx.doi.org/10.1038/nature17301]
Jiang L L, Jiapaer G, Bao A M, Guo H and Ndayisaba F. 2017. Vegetation dynamics and responses to climate change and human activities in Central Asia. Science of the Total Environment, 599-600: 967-980 [DOI: 10.1016/j.scitotenv.2017.05.012http://dx.doi.org/10.1016/j.scitotenv.2017.05.012]
Jiapaer G, Liang S L, Yi Q X and Liu J P. 2015. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecological Indicators, 58: 64-76 [DOI: 10.1016/j.ecolind.2015.05.036http://dx.doi.org/10.1016/j.ecolind.2015.05.036]
Kang L J, Di L P, Deng M X, Shao Y Z, Yu G N and Shrestha R. 2014. Use of geographically weighted regression model for exploring spatial patterns and local factors behind NDVI-precipitation correlation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(11): 4530-4538 [DOI: 10.1109/jstars.2014.2361128http://dx.doi.org/10.1109/jstars.2014.2361128]
Karger D N, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza R W, Zimmermann N E, Linder H P and Kessler M. 2017. Climatologies at high resolution for the Earth's land surface areas. Scientific Data, 4: 170122 [DOI: 10.1038/sdata.2017.122http://dx.doi.org/10.1038/sdata.2017.122]
Kariyeva J and van Leeuwen W J D. 2012. Phenological dynamics of irrigated and natural drylands in Central Asia before and after the USSR collapse. Agriculture, Ecosystems and Environment, 162: 77-89 [DOI: 10.1016/j.agee.2012.08.006http://dx.doi.org/10.1016/j.agee.2012.08.006]
Kong D D, Zhang Q, Singh V P and Shi P J. 2017. Seasonal vegetation response to climate change in the Northern Hemisphere (1982—2013). Global and Planetary Change, 148: 1-8 [DOI: 10.1016/j.gloplacha.2016.10.020http://dx.doi.org/10.1016/j.gloplacha.2016.10.020]
Lamchin M, Lee W K, Jeon S W, Wang S W, Lim C H, Song C and Sung M. 2018. Long-term trend and correlation between vegetation greenness and climate variables in Asia based on satellite data. Science of the Total Environment, 618: 1089-1095 [DOI: 10.1016/j.scitotenv.2017.09.145http://dx.doi.org/10.1016/j.scitotenv.2017.09.145]
Li L and Li Y Y. 2021. Temporal and spatial variation of pollen influx and its relationship with meteorological factors in broad-leaved Korean pine forest in Changbai Mountains. Quaternary Sciences, 41(6): 1749-1763
李琳, 李宜垠. 2021. 长白山阔叶红松林花粉通量的时空变化及其与气象因子的关系. 第四纪研究, 41(6): 1749-1763 [DOI: 10.11928/j.issn.1001-7410.2021.06.20http://dx.doi.org/10.11928/j.issn.1001-7410.2021.06.20]
Li X B and Shi P J. 2000. Sensitivity analysis of variation in NDVI, temperature and precipitation in typical vegetation types across China. Acta Phytoecologica Sinica, 24(3): 379-382
李晓兵, 史培军. 2000. 中国典型植被类型NDVI动态变化与气温、降水变化的敏感性分析. 植物生态学报, 24(3): 379-382
Lioubimtseva E. 2015. A multi-scale assessment of human vulnerability to climate change in the Aral Sea basin. Environmental Earth Sciences, 73: 719-729 [DOI: 10.1007/s12665-014-3104-1http://dx.doi.org/10.1007/s12665-014-3104-1]
Lioubimtseva E, Cole R, Adams J M and Kapustin G. 2005. Impacts of climate and land-cover changes in arid lands of Central Asia. Journal of Arid Environments, 62(2): 285-308 [DOI: 10.1016/j.jaridenv.2004.11.005http://dx.doi.org/10.1016/j.jaridenv.2004.11.005]
Lioubimtseva E and Henebry G M. 2009. Climate and environmental change in arid Central Asia: impacts, vulnerability, and adaptations. Journal of Arid Environments, 73(11): 963-977 [DOI: 10.1016/j.jaridenv.2009.04.022http://dx.doi.org/10.1016/j.jaridenv.2009.04.022]
Liu H Y and Piao S L. 2013. Drought threatened semi-arid ecosystems in the Inner Asia. Agricultural and Forest Meteorology, 178-179: 1-2 [DOI: 10.1016/j.agrformet.2013.04.022http://dx.doi.org/10.1016/j.agrformet.2013.04.022]
Ma M G, Wang J and Wang X M. 2006. Advance in the inter-annual variability of vegetation and its relation to climate based on remote sensing. National Remote Sensing Bulletin, 10(3): 421-431
马明国, 王建, 王雪梅. 2006. 基于遥感的植被年际变化及其与气候关系研究进展. 遥感学报, 10(3): 421-431 [DOI: 10.11834/jrs.20060363http://dx.doi.org/10.11834/jrs.20060363]
Mainali J, All J, Jha P K and Bhuju D R. 2015. Responses of montane forest to climate variability in the central Himalayas of Nepal. Mountain Research and Development, 35(1): 66-77 [DOI: 10.1659/MRD-JOURNAL-D-13-00101.1http://dx.doi.org/10.1659/MRD-JOURNAL-D-13-00101.1]
Nezlin N P, Kostianoy A G and Li B L. 2005. Inter-annual variability and interaction of remote-sensed vegetation index and atmospheric precipitation in the Aral Sea region. Journal of Arid Environments, 62(4): 677-700 [DOI: 10.1016/j.jaridenv.2005.01.015http://dx.doi.org/10.1016/j.jaridenv.2005.01.015]
Olson D M, Dinerstein E, Wikramanayake E D, Burgess N D, Powell G V N, Underwood E C, D'Amico J A, Itoua I, Strand H E, Morrison J C, Loucks C J, Allnutt T F, Ricketts T H, Kura Y, Lamoreux J F, Wettengel W W, Hedao P and Kassem K R. 2001. Terrestrial Ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience, 51(11): 933-938 [DOI: 10.1641/0006-3568(2001)051http://dx.doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2]
Piao S L and Fang J Y. 2003. Seasonal changes in vegetation activity in response to climate changes in China between 1982 and 1999. Acta Geographica Sinica, 58(1): 119-125
朴世龙, 方精云. 2003. 1982—1999年我国陆地植被活动对气候变化响应的季节差异. 地理学报, 58(1): 119-125 [DOI: 10.3321/j.issn:0375-5444.2003.01.014http://dx.doi.org/10.3321/j.issn:0375-5444.2003.01.014]
Piao S L, Mohammat A, Fang J Y, Cai Q and Feng J M. 2006. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Global Environmental Change, 16(4): 340-348 [DOI: 10.1016/j.gloenvcha.2006.02.002http://dx.doi.org/10.1016/j.gloenvcha.2006.02.002]
Piao S L, Wang X H, Ciais P, Zhu B, Wang T and Liu J. 2011. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Global Change Biology, 17(10): 3228-3239 [DOI: 10.1111/j.1365-2486.2011.02419.xhttp://dx.doi.org/10.1111/j.1365-2486.2011.02419.x]
Propastin P A, Kappas M and Muratova N R. 2008. Inter-annual changes in vegetation activities and their relationship to temperature and precipitation in Central Asia from 1982 to 2003. Journal of Environmental Informatics, 12(2): 75-87 [DOI: 10.3808/jei.200800126http://dx.doi.org/10.3808/jei.200800126]
Quetin G R and Swann A L S. 2017. Empirically derived sensitivity of vegetation to climate across global gradients of temperature and precipitation. Journal of Climate, 30(15): 5835-5849 [DOI: 10.1175/jcli-d-16-0829.1http://dx.doi.org/10.1175/jcli-d-16-0829.1]
Rasmussen M S. 1997. Operational yield forecast using AVHRR NDVI data: reduction of environmental and inter-annual variability. International Journal of Remote Sensing, 18(5): 1059-1077 [DOI: 10.1080/014311697218575http://dx.doi.org/10.1080/014311697218575]
Ruan H W and Yu J J. 2019. Changes in land cover and evapotranspiration in the five Central Asian countries from 1992 to 2015. Acta Geographica Sinica, 74(7): 1292-1304
阮宏威, 于静洁. 2019. 1992—2015年中亚五国土地覆盖与蒸散发变化. 地理学报, 74(7): 1292-1304 [DOI: 10.11821/dlxb201907002http://dx.doi.org/10.11821/dlxb201907002]
Shi Y F, Shen Y P, Li D L, Zhang G W, Ding Y J, Hu R J and Kang R S. 2003. Discussion on the present climate change from warm-dry to warm-wet in Northwest China. Quaternary Sciences, 23(2): 152-164
施雅风, 沈永平, 李栋梁, 张国威, 丁永建, 胡汝骥, 康尔泗. 2003. 中国西北气候由暖干向暖湿转型的特征和趋势探讨. 第四纪研究, 23(2): 152-164 [DOI: 10.3321/j.issn:1001-7410.2003.02.005http://dx.doi.org/10.3321/j.issn:1001-7410.2003.02.005]
Song Y and Ma M G. 2008. Variation of AVHRR NDVI and its relationship with climate in Chinese arid and cold regions. National Remote Sensing Bulletin, 12(3): 499-505
宋怡, 马明国. 2008. 基于GIMMS AVHRR NDVI数据的中国寒旱区植被动态及其与气候因子的关系. 遥感学报, 12(3): 499-505 [DOI: 10.11834/jrs.20080367http://dx.doi.org/10.11834/jrs.20080367]
Sun H Y, Wang C Y, Niu Z, Bukhosor and Li B. 1998. Analysis of the vegetation cover change and the relationship bgtween NDVI and environmental factors by using NOAA time series data. National Remote Sensing Bulletin, 2(3): 204-210
孙红雨, 王长耀, 牛铮, 布和敖斯尔, 李兵. 1998. 中国地表植被覆盖变化及其与气候因子关系——基于NOAA时间序列数据分析. 遥感学报, 2(3): 204-210 [DOI: 10.11834/jrs.19980309http://dx.doi.org/10.11834/jrs.19980309]
Suo Y X, Wang Z X, Liu C and Yu B H. 2009. Relationship between NDVI and precipitation and temperature in Middle Asia during 1982-2002. Resources Science, 31(8): 1422-1429
索玉霞, 王正兴, 刘闯, 于伯华. 2009. 中亚地区1982年至2002年植被指数与气温和降水的相关性分析. 资源科学, 31(8): 1422-1429 [DOI: 10.3321/j.issn:1007-7588.2009.08.023http://dx.doi.org/10.3321/j.issn:1007-7588.2009.08.023]
Syed F S, Giorgi F, Pal J S and King M P. 2006. Effect of remote forcings on the winter precipitation of central southwest Asia part 1: observations. Theoretical and Applied Climatology, 86(1/4): 147-160 [DOI: 10.1007/s00704-005-0217-1http://dx.doi.org/10.1007/s00704-005-0217-1]
Tang Z G, Ma J H, Peng H H, Wang S H and Wei J F. 2017. Spatiotemporal changes of vegetation and their responses to temperature and precipitation in upper Shiyang River basin. Advances in Space Research, 60(5): 969-979 [DOI: 10.1016/j.asr.2017.05.033http://dx.doi.org/10.1016/j.asr.2017.05.033]
Testa S, Mondino E C B and Pedroli C. 2014. Correcting MODIS 16-day composite NDVI time-series with actual acquisition dates. European Journal of Remote Sensing, 47(1): 285-305 [DOI: 10.5721/EuJRS20144718http://dx.doi.org/10.5721/EuJRS20144718]
Tucker C J, Fung I Y, Keeling C D and Gammon R H. 1986. Relationship between atmospheric CO2 variations and a satellite-derived vegetation index. Nature, 319(6050): 195-199 [DOI: 10.1038/319195a0http://dx.doi.org/10.1038/319195a0]
von Wehrden H, Hanspach J, Ronnenberg K and Wesche K. 2010. Inter-annual rainfall variability in Central Asia—A contribution to the discussion on the importance of environmental stochasticity in drylands. Journal of Arid Environments, 74(10): 1212-1215 [DOI: 10.1016/j.jaridenv.2010.03.011http://dx.doi.org/10.1016/j.jaridenv.2010.03.011]
Wang C Y, Niu Z, Du Z T, Guo J and He W B. 2009. Remote sensing technology and global change research. National Remote Sensing Bulletin, 13(S1): 79-86
王长耀, 牛铮, 杜子涛, 郭俊, 何文斌. 2009. 遥感技术与全球变化研究. 遥感学报, 13(S1): 79-86 [DOI: 10.11834/jrs.20090010http://dx.doi.org/10.11834/jrs.20090010]
Wang J S, Chen F H, Jin L Y and Bai H Z. 2010. Characteristics of the dry/wet trend over arid central Asia over the past 100 years. Climate Research, 41(1): 51-59 [DOI: 10.3354/cr00837http://dx.doi.org/10.3354/cr00837]
Wang Y and Tan Y J. 2014. Research on the variation of vegetation NDVI and its relationship with climatic factors in northern China. Journal of Shanxi Agricultural Sciences, 42(8): 890-895
王怡, 檀艳静. 2014. 华北地区植被NDVI变化及与气候因子的关系. 山西农业科学, 42(8): 890-895 [DOI: 10.3969/j.issn.1002-2481.2014.08.32http://dx.doi.org/10.3969/j.issn.1002-2481.2014.08.32]
Wu C, Venevsky S, Sitch S, Yang Y, Wang M H, Wang L, Gao Y. 2017. Present-day and future contribution of climate and fires to vegetation composition in the boreal forest of China. Ecosphere, 8(8): e01917 [DOI: 10.1002/ecs2.1917http://dx.doi.org/10.1002/ecs2.1917]
Xu H J, Wang X P and Yang T B. 2017. Trend shifts in satellite-derived vegetation growth in Central Eurasia, 1982—2013. Science of the Total Environment, 579: 1658-1674 [DOI: 10.1016/j.scitotenv.2016.11.182http://dx.doi.org/10.1016/j.scitotenv.2016.11.182]
Xu H J, Wang X P and Zhang X X. 2016. Decreased vegetation growth in response to summer drought in Central Asia from 2000 to 2012. International Journal of Applied Earth Observation and Geoinformation, 52: 390-402 [DOI: 10.1016/j.jag.2016.07.010http://dx.doi.org/10.1016/j.jag.2016.07.010]
Xu S Q, Yu Z B, Yang C G, Ji X B and Zhang K. 2018. Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River basin. Agricultural and Forest Meteorology, 263: 118-129 [DOI: 10.1016/j.agrformet.2018.08.010http://dx.doi.org/10.1016/j.agrformet.2018.08.010]
Yin G, Hu Z Y, Chen X and Tiyip T. 2016. Vegetation dynamics and its response to climate change in Central Asia. Journal of Arid Land, 8(3): 375-388 [DOI: 10.1007/s40333-016-0043-6http://dx.doi.org/10.1007/s40333-016-0043-6]
Yin G, Meng X Y, Wang H, Hu Z Y and Sun Z Q. 2017. Spatial-temporal variation of vegetation and its correlation with climate change in Central Asia during the period of 1982—2012. Acta Ecologica Sinica, 37(9): 3149-3163
殷刚, 孟现勇, 王浩, 胡增运, 孙志群. 2017. 1982—2012年中亚地区植被时空变化特征及其与气候变化的相关分析. 生态学报, 37(9): 3149-3163 [DOI: 10.5846/stxb201601240164http://dx.doi.org/10.5846/stxb201601240164]
Zhang R P, Guo J, Liang T G and Feng Q S. 2019. Grassland vegetation phenological variations and responses to climate change in the Xinjiang region, China. Quaternary International, 513: 56-65 [DOI: 10.1016/j.quaint.2019.03.010http://dx.doi.org/10.1016/j.quaint.2019.03.010]
Zhao X, Tan K, Zhao S and Fang J. 2011. Changing climate affects vegetation growth in the arid region of the northwestern China. Journal of Arid Environments, 75(10): 946-952 [DOI: 10.1016/j.jaridenv.2011.05.007http://dx.doi.org/10.1016/j.jaridenv.2011.05.007]
Zhou L, Kaufmann R K, Tian Y, Myneni R B and Tucker C J. 2003. Relation between interannual variations in satellite measures of northern forest greenness and climate between 1982 and 1999. Journal of Geophysical Research: Atmospheres, 108(D1): 4004. [DOI: 10.1029/2002JD002510http://dx.doi.org/10.1029/2002JD002510]
Zhou Y, Zhang L, Fensholt R, Wang K, Vitkovskaya I and Tian F. 2015. Climate contributions to vegetation variations in Central Asian Drylands: pre- and post-USSR collapse. Remote Sensing, 7(3): 2449-2470 [DOI: 10.3390/rs70302449http://dx.doi.org/10.3390/rs70302449]
Zhu Y K, Zhang J T, Zhang Y Q, Qin S G, Shao Y Y and Gao Y. 2019. Responses of vegetation to climatic variations in the desert region of northern China. catena, 175: 27-36 [DOI: 10.1016/j.catena.2018.12.007http://dx.doi.org/10.1016/j.catena.2018.12.007]
Zoran M A, Zoran L F V, Dida A I. 2016. Forest vegetation dynamics and its response to climate changes//Proceedings of SPIE 9998, Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII. Edinburgh: SPIE: 99981V [DOI: 10.1117/12.2241374http://dx.doi.org/10.1117/12.2241374]
相关作者
相关机构