利用多元LBP特征自动提取城市道路边界
Automatic extraction of urban road boundaries using diverse LBP features
- 2022年26卷第3期 页码:541-554
纸质出版日期: 2022-03-07
DOI: 10.11834/jrs.20209228
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-03-07 ,
扫 描 看 全 文
刘如飞,马新江,卢秀山,王旻烨,王鹏.2022.利用多元LBP特征自动提取城市道路边界.遥感学报,26(3): 541-554
Liu R F,Ma X J,Lu X S,Wang M Y and Wang P. 2022. Automatic extraction of urban road boundaries using diverse LBP features. National Remote Sensing Bulletin, 26(3):541-554
车载移动测量系统可采集高精度道路三维点云数据,为道路边界自动化提取提供了支撑。为解决车载激光点云中城市道路边界点云提取困难问题,本文引入局部二值模式LBP(Local Binary Pattern),针对各类城市道路边界特征,设计了高度LBP、高程离散度LBP和空间形状LBP 3种改进算子;构建多元LBP特征语义识别模型,实现了道路路缘石空间几何与分布特征的量化分析;最后通过道路方向约束进行聚类去噪,提取道路边界。对4种不同的城市路段点云进行实验,实验数据的提取完整率为92.0%,准确率为95.8%。结果表明,该方法可以准确地提取不同环境下的道路边界,具有较强的适应性。
As an advanced surveying and mapping system
vehicle-borne mobile mapping system has several advantages
such as high precision
high efficiency
active
and non-contact measurement. This system can quickly collect high-precision road 3D point clouds
which are important for road boundary automatic extraction
and has become important in road information acquisition and update.
To address the difficult and inaccurate extraction of urban road boundary point clouds in vehicle-borne laser point clouds
this paper introduces the Local Binary Pattern (LBP)
which is an efficient and effective image processing method
to automatic point cloud classification. First
to take full advantage of the characteristics of various urban road boundaries
three improved operators were developed
including height
elevation dispersion
and spatial shape LBPs
which make full use of the three-dimensional shape
spatial geometry
and distribution characteristics of curbs. Statistical analysis was also performed on the feature image pixel values of the three LBP improvement operators. The statistical results are consistent with the spatial distribution and geometric characteristics of different objects
such as road boundary and road surface. Then
a diverse LBP features semantic recognition model
which can realize the quantitative expression of the spatial geometry and distribution characteristics curbs and pavements
was built. Finally
the road boundary point clouds were extracted by cluster and denoised with the road direction as the constraint.
The point clouds of four different urban sections were tested. Results show that the extraction completeness rate of the experimental data is 92.0%. The method we developed can extract the main road and sidewalk boundary point clouds under different road environments. In terms of accuracy
95.8% accuracy was achieved from considering the spatial distribution and geometrical characteristics of the curb. The results indicate that our method can accurately extract road boundaries in different environments and has strong adaptability.
遥感移动测量系统道路边界多元LBP路缘石点云分类
remote sensingmobile measurement systemroad boundarydiverse LBPcurbpoint clouds classification
Bastani F, He S T, Abbar S, Alizadeh M, Balakrishnan H, Chawla S, Madden S and DeWitt D. 2018. Roadtracer: automatic extraction of road networks from aerial images//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE: 4720-4728 [DOI: 10.1109/CVPR.2018.00496http://dx.doi.org/10.1109/CVPR.2018.00496]
Dai J G, Du Y, Fang X X, Wang Y and Miao Z P. 2018. Road extraction method for high resolution optical remote sensing images with multiple feature constraints. Journal of Remote Sensing, 22(5): 777-791
戴激光, 杜阳, 方鑫鑫, 王杨, 苗志鹏. 2018. 多特征约束的高分辨率光学遥感影像道路提取. 遥感学报, 22(5): 777-791 [DOI: 10.11834/jrs.20188055http://dx.doi.org/10.11834/jrs.20188055]
Han T, Yang B S, Yuan P F and Liang F X. 2018. OSM-assisted extraction of 3D vector boundary from mobile laser scanning point cloud. Geomatics Science and Technology, 6(2): 128-140
韩婷, 杨必胜, 袁鹏飞, 梁福逊. 2018. OSM辅助的车载激光点云道路三维矢量边界提取. 测绘科学技术, 6(2): 128-140 [DOI: 10.12677/gst.2018.62015http://dx.doi.org/10.12677/gst.2018.62015]
Hui Z Y and Hu Y J. 2017. A review on road extraction methods from airborne LiDAR. Science of Surveying and Mapping, 42(3): 70-74
惠振阳, 胡友健. 2017. 机载LiDAR点云中道路的提取方法. 测绘科学, 42(3): 70-74 [DOI: 10.16251/j.cnki.1009-2307.2017.03.013http://dx.doi.org/10.16251/j.cnki.1009-2307.2017.03.013]
Ibrahim S and Lichti D. 2012. Curb-based street floor extraction from mobile terrestrial LIDAR point cloud. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B5: 193-198 [DOI: 10.5194/isprsarchives-XXXIX-B5-193-2012http://dx.doi.org/10.5194/isprsarchives-XXXIX-B5-193-2012]
Jaakkola A, Hyyppä J, Hyyppä H and Kukko A. 2008. Retrieval algorithms for road surface modelling using laser-based mobile mapping. Sensors, 8(9): 5238-5249 [DOI: 10.3390/s8095238http://dx.doi.org/10.3390/s8095238]
Li C and Li F F. 2013. Auto-extracting sub-pixel line feature of digital images based on hypothesis testing. Acta Geodaetica et Cartographica Sinica, 42(1): 67-72
李畅, 李芳芳. 2013. 基于假设检验的数字影像线状特征亚像素自动提取. 测绘学报, 42(1): 67-72
Li C and Wei D. 2016. A line segment detector based on pixels grouping and step-by-step quality control. Journal of Infrared and Millimeter Waves, 35(6): 681-687
李畅, 魏东. 2016. 一个基于像素编组和逐级质量控制的线段检测算子. 红外与毫米波学报, 35(6): 681-687 [DOI: 10.11972/j.issn.1001-9014.2016.06.009http://dx.doi.org/10.11972/j.issn.1001-9014.2016.06.009]
Li C, Zhang Y J and Zhang Z X. 2016. Automatic keyline recognition and 3D reconstruction for quasi-planar façades in close-range images. The Photogrammetric Record, 31(153): 29-50 [DOI: 10.1111/phor.12141http://dx.doi.org/10.1111/phor.12141]
Li L, Zhang Y S, Yu Y, Xue W and Xie L M. 2017. Urban road extraction from airborne LiDAR point cloud automatically based on skewness balance algorithm. Journal of Geomatics Science and Technology, 34(6): 628-632, 638
李磊, 张永生, 于英, 薛武, 谢丽敏. 2017. 利用偏度平衡自动提取机载LiDAR点云城区道路. 测绘科学技术学报, 34(6): 628-632, 638 [DOI: 10.3969/j.issn.1673-6338.2017.06.016http://dx.doi.org/10.3969/j.issn.1673-6338.2017.06.016]
Li X, Zhang W G and Bian X D. 2004. Research on detection of lane based on machine vision. Journal of Southeast University, 20(2): 176-180 [DOI: 10.3969/j.issn.1003-7985.2004.02.010http://dx.doi.org/10.3969/j.issn.1003-7985.2004.02.010]
Liu R F, Lu X S, Yue G W and Tian M Y. 2017. An automatic extraction method of road from vehicle-borne laser scanning point clouds. Geomatics and Information Science of Wuhan University, 42(2): 250-256
刘如飞, 卢秀山, 岳国伟, 田茂义. 2017. 一种车载激光点云数据中道路自动提取方法. 武汉大学学报(信息科学版), 42(2): 250-256 [DOI: 10.13203/j.whugis20140959http://dx.doi.org/10.13203/j.whugis20140959]
Luo H F, Fang L N and Chen C C. 2017. Curb point clouds extraction from vehicle-borne laser scanning data. Journal of Geo-information Science, 19(7): 861-871
罗海峰, 方莉娜, 陈崇成. 2017. 车载激光扫描数据路坎点云提取方法. 地球信息科学学报, 19(7): 861-871 [DOI: 10.3724/SP.J.1047.2017.00861http://dx.doi.org/10.3724/SP.J.1047.2017.00861]
Ojala T, Pietikäinen M and Harwood D. 1996. A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1): 51-59 [DOI: 10.1016/0031-3203(95)00067-4http://dx.doi.org/10.1016/0031-3203(95)00067-4]
Ojala T, Pietikainen M and Maenpaa T. 2002. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7): 971-987 [DOI: 10.1109/tpami.2002.1017623http://dx.doi.org/10.1109/tpami.2002.1017623]
Serna A and Marcotegui B. 2013. Urban accessibility diagnosis from mobile laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing, 84: 23-32 [DOI: 10.1016/j.isprsjprs.2013.07.001http://dx.doi.org/10.1016/j.isprsjprs.2013.07.001]
Song K C, Yan Y H, Chen W H and Zhang X. 2013. Research and perspective on local binary pattern. Acta Automatica Sinica, 39(6): 730-744
宋克臣, 颜云辉, 陈文辉, 张旭. 2013. 局部二值模式方法研究与展望. 自动化学报, 39(6): 730-744 [DOI: 10.3724/SP.J.1004.2013.00730http://dx.doi.org/10.3724/SP.J.1004.2013.00730]
Yang B S, Fang L N and Li J. 2013. Semi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 79: 80-93 [DOI: 10.1016/j.isprsjprs.2013.01.016http://dx.doi.org/10.1016/j.isprsjprs.2013.01.016]
Yang B S, Liu Y, Dong Z, Liang F X, Li B J, Peng X Y. 2017. 3D local feature BKD to extract road information from mobile laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 130: 329-343 [DOI: 10.1016/j.isprsjprs.2017.06.007http://dx.doi.org/10.1016/j.isprsjprs.2017.06.007]
Yang W S, Cai L L and Gu S D. 2018. Extraction city road boundary method based on point cloud normal vector clustering. Acta Photonica Sinica, 47(6): 0612003
杨望山, 蔡来良, 谷淑丹. 2018. 提取城市道路边线的点云法向量聚类法. 光子学报, 47(6): 0612003 [DOI: 10.3788/gzxb20184706.0612003http://dx.doi.org/10.3788/gzxb20184706.0612003]
Yu Y T, Li J, Guan H Y, Wang C and Yu J. 2015. Semiautomated extraction of street light poles from mobile LiDAR point-clouds. IEEE Transactions on Geoscience and Remote Sensing, 53(3): 1374-1386 [DOI: 10.1109/TGRS.2014.2338915http://dx.doi.org/10.1109/TGRS.2014.2338915]
Zai D W, Li J, Guo Y L, Cheng M, Lin Y B, Luo H and Wang C. 2018. 3-D road boundary extraction from mobile laser scanning data via supervoxels and graph cuts. IEEE Transactions on Intelligent Transportation Systems, 19(3): 802-813 [DOI: 10.1109/TITS.2017.2701403http://dx.doi.org/10.1109/TITS.2017.2701403]
Zhang J X, Lin X G and Liang X L. 2017. Advances and prospects of information extraction from point clouds. Acta Geodaetica et Cartographica Sinica, 46(10): 1460-1469
张继贤, 林祥国, 梁欣廉. 2017. 点云信息提取研究进展和展望. 测绘学报, 46(10): 1460-1469 [DOI: 10.11947/j.AGCS.2017.20170345http://dx.doi.org/10.11947/j.AGCS.2017.20170345]
Zhang W D. 2010. LIDAR-based road and road-edge detection//Proceedings of 2010 IEEE Intelligent Vehicles Symposium. San Diego: IEEE: 845-848 [DOI: 10.1109/IVS.2010.5548134http://dx.doi.org/10.1109/IVS.2010.5548134]
Zhang Y, Heipke C, Butenuth M and Hu X. 2006. Automatic extraction of wind erosion obstacles by integration of GIS data, DSM and stereo images. International Journal of Remote Sensing, 27(8): 1677-1690 [DOI: 10.1080/01431160500406896http://dx.doi.org/10.1080/01431160500406896]
Zhou L and Vosselman G. 2012. Mapping curbstones in airborne and mobile laser scanning data. International Journal of Applied Earth Observation and Geoinformation, 18: 293-304 [DOI: 10.1016/j.jag.2012.01.024http://dx.doi.org/10.1016/j.jag.2012.01.024]
相关作者
相关机构