天宫一号高光谱遥感场景分类数据集及应用
Scene classification dataset using the Tiangong-1 hyperspectral remote sensing imagery and its applications
- 2020年24卷第9期 页码:1077-1087
纸质出版日期: 2020-09-07
DOI: 10.11834/jrs.20209323
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-09-07 ,
扫 描 看 全 文
刘康,周壮,李盛阳,刘云飞,万雪,刘志文,谭洪,张万峰.2020.天宫一号高光谱遥感场景分类数据集及应用.遥感学报,24(9): 1077-1087
Liu K, Zhou Z, Li S Y, Liu Y F, Wan X, Liu Z W, Tan H and Zhang W F. 2020. Scene classification dataset using the Tiangong-1 hyperspectral remote sensing imagery and its applications. Journal of Remote Sensing(Chinese),24(9): 1077-1087[DOI:10.11834/jrs.20209323]
天宫一号高光谱成像仪具有空间分辨率高、光谱分辨率高、图谱合一等特性,在中国航天高光谱领域具有里程碑的意义。针对一般遥感场景分类数据集尺度单一、光谱分辨率较低等问题,本文提出基于天宫一号的多谱段、高空间分辨率、多时相高光谱遥感场景分类数据集(TG1HRSSC)。利用天宫一号高光谱成像仪获取的高质量数据,经过辐射校正、几何校正、空间裁剪、波段筛选、数据质量分析与控制等,制作了一批通用的航天高光谱遥感场景分类数据集,通过载人航天空间应用数据推广服务平台(
http://www.msadc.cn
http://www.msadc.cn
[2019-09-10])进行分发和共享。该数据集包括天宫一号高光谱成像仪获取的城镇、农田、林地、养殖塘、荒漠、湖泊、河流、港口、机场等9个典型地物场景的204个高光谱影像数据,其中5 m分辨率全色谱段1个波段、10 m分辨率可见近红外谱段54个有效波段以及20 m分辨率短波红外谱段52个有效波段。研究利用AlexNet、VGG-VD-16、GoogLeNet等深度学习算法网络对构建的数据集进行场景分类的试验,结果表明该数据集的场景分类应用实现较好效果。由于该数据集具备高分辨、高光谱等特征优势,未来在语义理解、多目标检测等方面有着广泛的应用价值。
Remote sensing image scene classification is an important means of remote sensing image interpretation
which has important application value in land and resources investigation
ecological environment monitoring
disaster assessment
target interpretation and so on. In recent years
deep learning has become a research hotspot in the field of remote sensing scene classification
and data set is the basis for its development. Most of the existing remote sensing scene classification datasets are true color images with single scale and less spectral information. And other hyperspectral data sets have relatively small data coverage. The data of Tiangong-1 Hyperspectral Imager has the characteristics of high spatial resolution
high hyperspectral resolution and wide coverage. It can be used for comprehensive feature extraction and analysis of spectral spatial information
which can provide more abundant data sources for remote sensing image classification application research
and make up for the deficiency of spectral information and limited application of common remote sensing scene classification data sets. In this study
based on the high-quality data acquired by Tiangong-1 Hyperspectral Imager
Tiangong-1 Hyperspectral Remote Sensing Scene Classification data set (TG1HRSSC) is produced through radiation correction
geometric correction
spatial clipping
band screening
and data quality analysis and control. The dataset
which contains the 204 hyperspectral multiresolution image data of nine typical scenes (e.g.
city
farmland
forest
pond culture
desert
lake
river and airport)
is published and shared in the Space Application Data Promoting Service Platform for China Manned Space Engineering (
http://www.msadc.cn
http://www.msadc.cn
[2019-09-10]). The dataset includes one band of 5 m resolution full spect
rum
54 bands of 10 m resolution visible and near-infrared spectrum
and 52 bands of 20 m resolution short-wave infrared spectrum. In addition
this paper describes and analyzes the data set from four aspects: scene distribution
time distribution
spectral distribution and scale distribution. In order to test the application effect of data classification
three classical convolution neural networks (VGG-VD-16
AlexNet and GoogleLeNet) are selected to train the data sets by transfer learning. The overall classification accuracy is 91.52 ± 0.60
90.47 ± 0.23 and 89.12 ± 0.34
respectively. Results show that the scene classification of the dataset is effective. In following research
the network model can be designed to make full use of the multi-spectral characteristics of the data to achieve more accurate scene classification
and to improve the generalization ability of existing models by using the characteristics of multi-scale data. The data set (TG1HRSSC) has the advantages of hyperspectral
high spatial resolution and multi-scale. The abundant spectral information and fine spatial information provide data support for the research of target recognition of fine ground objects
remote sensing scene classification
remote sensing semantic understanding and other applications
which has unique value and application prospects.
天宫一号高光谱成像仪场景分类数据集深度学习
Tiangong-1Hyperspectral Imagerscene classificationdata setdeep learning
Deng J, Dong W, Socher R, Li L J, Li K and Li F F. 2009. ImageNet: a large-scale hierarchical image database//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE [DOI: 10.1109/CVPR.2009.5206848http://dx.doi.org/10.1109/CVPR.2009.5206848]
Gao M, Zhang S C and Li S Y. 2014. Tiangong-1 hyperspectral remote sensing and application. Journal of remote sensing, 18(S1): 2-10
高铭, 张善从, 李盛阳. 2014. 天宫一号高光谱成像仪遥感应用. 遥感学报, 18(S1): 2-10 [DOI: 10.11834/jrs.2014z01http://dx.doi.org/10.11834/jrs.2014z01]
Helber P, Bischke B, Dengel A and Borth D. 2019. EuroSAT: a novel dataset and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7): 2217-2226 [DOI: 10.1109/JSTARS.2019.2918242http://dx.doi.org/10.1109/JSTARS.2019.2918242]
Krizhevsky A, Sutskever I and Hinton G E. 2012. ImageNet classification with deep convolutional neural networks//Proceedings of the 26th Annual Conference on Neural Information Processing Systems. Lake Tahoe, USA: NIPS
LeCun Y, Bottou L, Bengio Y and Haffner P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11): 2278-2324 [DOI: 10.1109/5.726791http://dx.doi.org/10.1109/5.726791]
Li S Y, Liu Z W, Liu K and Zhao Z F. 2019. Advances in application of space hyperspectral remote sensing (invited). Infrared and Laser Engineering, 48(3): 0303001
李盛阳, 刘志文, 刘康, 赵子飞. 2019. 航天高光谱遥感应用研究进展(特邀). 红外与激光工程, 48(3): 0303001
Li Z Q, Zhu R F, Gao F, Meng X Y, An Y and Zhong X. 2018. Hyperspectral remote sensing image classification based on three-dimensional convolution neural network combined with conditional random field optimization. Acta Optica Sinica, 38(8): 0828001
李竺强, 朱瑞飞, 高放, 孟祥玉, 安源, 钟兴. 2018. 三维卷积神经网络模型联合条件随机场优化的高光谱遥感影像分类. 光学学报, 38(8): 0828001 [DOI: 10.3788/AOS201838.0828001http://dx.doi.org/10.3788/AOS201838.0828001]
Liu Z W, Liu D S and Wei J B. 2014. Rigorous geometric model of Tiangong-1 hyperspectral spectrometer. Journal of remote sensing, 18(S1): 62-67
刘志文, 刘定生, 魏静波. 2014. 天宫一号高光谱成像仪严密成像几何模型研究. 遥感学报, 18(S1): 62-67 [DOI: 10.11834/jrs.2014z10http://dx.doi.org/10.11834/jrs.2014z10]
Marmanis D, Datcu M, Esch T and Stilla U. 2016. Deep learning earth observation classification using ImageNet pretrained networks. IEEE Geoscience and Remote Sensing Letters, 13(1): 105-109 [DOI: 10.1109/LGRS.2015.2499239http://dx.doi.org/10.1109/LGRS.2015.2499239]
Simonyan K and Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition//Proceedings of the 3rd International Conference on Learning Representations. San Diego, USA: [s.n.]
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V and Rabinovich A. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9.
Xia G S, Yang W, Delon J, Gousseau Y, Sun H and Maˆıtre H. Structural high-resolution satellite image indexing [C].2010.
Xia G S, Hu J W, Hu F, Shi B G, Bai X, Zhong Y F, Zhang L P and Lu X Q. 2017. AID: a benchmark data set for performance evaluation of aerial scene classification. IEEE Transactions on Geoscience and Remote Sensing, 55(7): 3965-3981 [DOI: 10.1109/TGRS.2017.2685945http://dx.doi.org/10.1109/TGRS.2017.2685945]
Xu M. 2017. Hyperspectral Image Classification Based on Deep Convolutional Neural Networks. Xi’an: Xidian University
徐敏. 2017. 基于深度卷积神经网络的高光谱图像分类. 西安: 西安电子科技大学
Yang Y and Newsam S. 2010. Bag-of-visual-words and spatial extensions for land-use classification//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. San Jose, USA: ACM: 270-279 [DOI: 10.1145/1869790.1869829http://dx.doi.org/10.1145/1869790.1869829]
Zhang W J, Wu Y F, Liu L Y, Zhang B, Li X Z and Zhang J X. 2014. Tiangong-1 hyperspectral imager radiometric and spectral correction. Journal of Remote Sensing, 18(S1): 56-61
张文娟, 吴远峰, 刘良云, 张兵, 李绪志, 张九星. 2014. 天宫一号高光谱成像仪系统光谱辐射校正. 遥感学报, 18(S1): 56-61 [DOI: 10.11834/jrs.2014z09http://dx.doi.org/10.11834/jrs.2014z09]
Zou Q, Ni L H, Zhang T and Wang Q. 2015. Deep learning based feature selection for remote sensing scene classification. IEEE Geoscience and Remote Sensing Letters, 12(11): 2321-2325 [DOI: 10.1109/LGRS.2015.2475299http://dx.doi.org/10.1109/LGRS.2015.2475299]
相关作者
相关机构