“一带一路”沿线港口城市天宫二号多光谱影像数据集
Multispectral image dataset of Tiangong-2 for port cities along the Belt and Road
- 2020年24卷第9期 页码:1088-1098
纸质出版日期: 2020-09-07
DOI: 10.11834/jrs.20209333
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-09-07 ,
扫 描 看 全 文
覃帮勇,万雪,轩诗宇,李盛阳,刘康.2020.“一带一路”沿线港口城市天宫二号多光谱影像数据集.遥感学报,24(9): 1088-1098
QIN Bangyong,WAN Xue,XUAN Shiyu,LI Shengyang,LIU Kang. 2020. Multispectral image dataset of Tiangong-2 for port cities along the Belt and Road. Journal of Remote Sensing(Chinese),24(9): 1088-1098.[DOI:10.11834/jrs.20209333]
港口城市在“一带一路”建设中具有重要地位和作用,遥感影像数据可以为港口城市的动态监测提供有效的信息支撑。天宫二号空间实验室搭载的宽波段成像仪是新一代中分辨率成像光谱仪,具有谱段宽、视场大等特点,在可见近红外、短波红外、热红外谱段共设置有18个通道,空间分辨率分别为100 m、200 m和400 m,自2016-09—2019-07获取了大量的对地观测多光谱影像数据。本文面向 “一带一路”沿线的25个港口城市,从天宫二号宽波段成像仪获取的多光谱数据中挑选出58组不同时间获取的高质量影像,经过预处理、辐射校正、几何校正等处理和数据质量控制,构建了“一带一路”沿线港口城市专题影像数据集,并对该数据集的应用价值和潜力进行了分析。结果表明该数据集可以为“一带一路”沿线港口城市及其周边区域资源环境遥感监测提供重要信息支撑,在港口城市相关的中大尺度场景分类识别方面具有较大应用价值。
Port cities play a vital role in the implementation of the Belt and Road initiative. Remote sensing data can provide effective information support for the dynamic monitoring of port cities. In this paper
58 groups of high-quality multispectral image data obtained by the wide-band imaging spectrometer of Tiangong-2 at different times are selected to construct the thematic dataset of 25 port cities along the Belt and Road. This dataset can provide important support for the remote sensing monitoring in resources and environment of the port cities and its surrounding area along the Belt and Road.
Firstly
The raw data of wide-band imaging spectrometer undergo through a series of processing steps
such as format analyzing
field of view combination
homogeneity correction
image framing
absolute radiometric correction
geometric correction and format packaging
to generate standard data products and its auxiliary files. Then
image quality evaluation indexes
including signal to noise ratio
information entropy
clarity
contrast
radiation uniformity
etc. are adopted to assess data quality and to select high quality data products. Calibration and data quality control methods are used to improve the accuracy of data products. At last
several typical convolution neural network algorithms are used to verify the application potential of the data set in scene classification and recognition.
350 typical port and non-port image samples are extracted from the data set in this article and be marked manually. After data enhancement
250 samples of them are used to train several typical convolutional neural networks
they are AlexNet
VGG16
ResNet18 and MobileNet-v2
and the remaining samples are used for verification. The average recognition accuracy of the four algorithms is 91%
in which Resnet18 and MobileNet-v2 networks have the highest accuracy rate (93%)
Resnet18 network has more advantages than other networks in precision rate
VGG16 and MobileNet-v2 network have the highest recall rate. Therefore
the dataset is suitable for the common convolutional neural networks and has good application effect in the scene classification and recognition of port city.
The multispectral remote sensing image data set constructed in this paper comes from the wide-band imaging spectrometer of Tiangong-2. It has the characteristics of wide spectral range
high spatial resolution and diverse observation time
and is a beneficial extension for the existing data set of the port city along the Belt and Road. After strictly data processing and data quality control
the image data has standard format and reliable quality. Some of them has been applied in many fields
such as ocean
land
ecology and environment. In addition
it has a good application effect in the scene classification and recognition of port city. This data set is a valuable data resource for the remote sensing applications of the port city and its surrounding areas along the Belt and Road.
天宫二号宽波段成像仪一带一路港口城市遥感影像数据集
Tiangong-2Wide-band Imaging Spectrometerthe Belt and Roadport cityremote sensing image data set
Bai Z G. 2007. HY-1B ocean satellite. Aerospace China, (4): 12-15
Barnes W L and Salomonson V V. 1992. MODIS: a global imaging spectroradiometer for the Earth Observing System//Proceedings Volume 10269, Optical Technologies for Aerospace Sensing: A Critical Review. Boston, MA, United States: SPIE: 285-307 [DOI: 10.1117/12.161578http://dx.doi.org/10.1117/12.161578]
Bu Y D. 2012. Research on Image Texture Feature Extraction. Ji’nan: Shandong Normal University
步亚东. 2012. 图像纹理特征提取的研究. 济南: 山东师范大学
Cong P F, Chen K X, Qu L M and Han J B. 2019. Temporal and spatial changes of the Yellow River delta wetland based on Multi-Source data during 30 years//Proceedings of the Tiangong-2 Remote Sensing Application Conference, Lecture Notes in Electrical Engineering. Singapore: Springer, 541: 286-299 [DOI: 10.1007/978-981-13-3501-3_27http://dx.doi.org/10.1007/978-981-13-3501-3_27]
Curran P J and Steele C M. 2005. MERIS: the re-branding of an ocean sensor. International Journal of Remote Sensing, 26(9): 1781-1798 [DOI: 10.1080/01431160412331330275http://dx.doi.org/10.1080/01431160412331330275]
Gao M. 2019. Earth observation payloads and data applications of Tiangong-2 space laboratory//Proceedings of the Tiangong-2 Remote Sensing Application Conference, Lecture Notes in Electrical Engineering. Singapore: Springer, 541: 1-13 [DOI: 10.1007/978-981-13-3501-3_1http://dx.doi.org/10.1007/978-981-13-3501-3_1]
Guo B, Fan Y W, Yang F, Jiang L, Yang W N, Chen S T, Gong R and Liang T. 2019. Quantitative assessment model of ecological vulnerability of the Silk Road Economic Belt, China, utilizing remote sensing based on the partition-integration concept. Geomatics, Natural Hazards and Risk, 10(1): 1346-1366 [DOI: 10.1080/19475705.2019.1568313http://dx.doi.org/10.1080/19475705.2019.1568313]
He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV: IEEE: 770-778 [DOI: 10.1109/CVPR.2016.90http://dx.doi.org/10.1109/CVPR.2016.90]
Hu Y F and Zhang Y F. 2007. Analysis of relative radiometric calibration accuracy of space camera. Spacecraft Recovery and Remote Sensing, 28(4): 54-57
胡永富, 张宇烽. 2007. 空间相机相对辐射定标精度分析. 航天返回与遥感, 28(4): 54-57 [DOI: 10.3969/j.issn.1009-8518.2007.04.011http://dx.doi.org/10.3969/j.issn.1009-8518.2007.04.011]
Krizhevsky A, Sutskever I and Hinton G E. 2012. ImageNet classification with deep convolutional neural networks//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY, United States: Curran Associates Inc.: 1097-1105
Li J, Xing Q G, Liu H L and Yu L. 2019. Radiometric cross-calibration between the thermal infrared data of MODIS and Tiangong-2 WIS for monitoring sea surface temperature//Proceedings of the Tiangong-2 Remote Sensing Application Conference, Lecture Notes in Electrical Engineering. Singapore: Springer, 541: 192-200 [DOI: 10.1007/978-981-13-3501-3_18http://dx.doi.org/10.1007/978-981-13-3501-3_18]
Li S Y, Zhang W F, Liu Z W, Tan H, Yu H J, Wang B, Mu L L and Li X. 2019. Tiangong-2 ground data processing and service system towards multiple categories of payloads product processing//Proceedings of the Tiangong-2 Remote Sensing Application Conference, Lecture Notes in Electrical Engineering. Singapore: Springer, 541: 61-70 [DOI: 10.1007/978-981-13-3501-3_6http://dx.doi.org/10.1007/978-981-13-3501-3_6]
Liu K, Qin B Y, Mu L L and Li S Y. 2017. Monitoring and analysing of reclamation change based on multi-data remote sensing images: a case study of partial area of Liaoning province. Marine Environmental Science, 36(6): 911-917
刘康, 覃帮勇, 牟伶俐, 李盛阳. 2017. 基于多时相遥感影像的围填海动态监测与变化分析——以辽宁省部分沿海县市为例. 海洋环境科学, 36(6): 911-917
Liu K, Qin B Y and Li S Y. 2018. The application of the Tiangong-2 Wide-Band imaging spectrometer data in the ecological environment evaluation: a case study of Kunming//Proceedings of the International Workshop on Environment and Geoscience. Hangzhou, China: [s.n.],1: 469-476 [DOI: 10.5220/0007432004690476http://dx.doi.org/10.5220/0007432004690476]
Liu Q H, Wu J J, Li L, Yu L, Li J, Xin X Z, Jia L, Zhong B, Niu Z, Xu X L, Meng Q Y, Zhao J, Zhang H L, Hu G C and Zheng C L. 2018. Ecological environment monitoring for sustainable development goals in the Belt and Road region. Journal of Remote Sensing, 22(4): 686-708
柳钦火, 吴俊君, 李丽, 俞乐, 李静, 辛晓洲, 贾立, 仲波, 牛铮, 徐新良, 孟庆岩, 赵静, 张海龙, 胡光成, 郑超磊. 2018. “一带一路”区域可持续发展生态环境遥感监测. 遥感学报, 22(4): 686-708 [DOI: 10.11834/jrs.20187264http://dx.doi.org/10.11834/jrs.20187264]
Liu W D. 2015. Scientific understanding of the Belt and Road Initiative of China and related research themes. Progress in Geography, 34(5): 538-544
刘卫东. 2015. “一带一路”战略的科学内涵与科学问题. 地理科学进展, 34(5): 538-544 [DOI: 10.11820/dlkxjz.2015.05.001http://dx.doi.org/10.11820/dlkxjz.2015.05.001]
Liu X P and Sun S J. 2015. Application of domestic remote sensing satellite in ecological environment protection in the construction of the Belt and Road. Satellite Application, (8): 52-54
刘雪萍, 孙思佳. 2015. 国产遥感卫星在“一带一路”建设中生态环境保护的应用. 卫星应用, (8): 52-54
Luo R, Zhou J, Yang J J, Ai L J and Feng Y L. 2019. Downscaling of Tiangong-2 land surface temperature//Proceedings of the Tiangong-2 Remote Sensing Application Conference, Lecture Notes in Electrical Engineering. Singapore: Springer, 541: 170-179 [DOI: 10.1007/978-981-13-3501-3_16http://dx.doi.org/10.1007/978-981-13-3501-3_16]
Qin B Y, Hong B, Zhang Z, Yang X F and Li Z W. 2014. A generally applicable noise-estimating method for remote sensing images. Remote Sensing Letters, 5(5): 481-490 [DOI: 10.1080/2150704X.2014.923126http://dx.doi.org/10.1080/2150704X.2014.923126]
Qin B Y, Shang R, Li S Y, Hei B Q and Liu Z W. 2015. Reliable clarity automatic-evaluation method for optical remote sensing images//Proceedings Volume 9675, AOPC 2015: Image Processing and Analysis. Beijing, China: SPIE, 9675: 967533 [DOI: 10.1117/12.2202971]
Qin B Y, Li S Y, Hao Z W, Liu K and Wang B. 2017. Earth observation data of the Tiangong-2 Space Laboratory 2016-2017). China Scientific Data, 2(4
) (覃帮勇, 李盛阳, 郝忠翁, 刘康, 王博. 2017. 2016~2017年天宫二号空间实验室对地观测数据产品集. 中国科学数据, 2(4)) [DOI: 10.11922/csdata.2017.0003.zhhttp://dx.doi.org/10.11922/csdata.2017.0003.zh]
Qin B Y, Li L J and Li S Y. 2018. Data quality evaluation and application potential analysis of Tiangong-2 wide-band imaging spectrometer//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Beijing, China: [s.n.],XLII-3: 1427-1431
Sandler M, Howard A, Zhu M L, Zhmoginov A and Chen L C. 2018. MobileNetV2: inverted residuals and linear bottlenecks//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE: 4510-4520 [DOI: 10.1109/CVPR.2018.00474http://dx.doi.org/10.1109/CVPR.2018.00474]
Shi M, Chen J, Qin B Y and Li S Y. 2018. Inversion of land surface temperature and its application in urban agglomeration thermal environment monitoring based on Tiangong-2 data. Remote Sensing Technology and Application, 33(5): 811-819
石满, 陈健, 覃帮勇, 李盛阳. 2018. 天宫二号数据地表温度反演及其在城市群热环境监测中的应用. 遥感技术与应用, 33(5): 811-819 [DOI: 10.11873/j.issn.1004-0323.2018.5.0811http://dx.doi.org/10.11873/j.issn.1004-0323.2018.5.0811]
Simonyan K and Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556
Song Y and Hou X Y. 2017. A dataset of land cover classification in 25 port cities and their surrounding areas along “One Belt and One Road” (2015). China Scientific Data, 2(3) (宋洋, 侯西勇. 2017. 2015年“一带一路”25个港口城市及其周边区域土地覆盖分类数据集. 中国科学数据, 2(3)) [DOI: 10.11922/csdata.170.2017.0131http://dx.doi.org/10.11922/csdata.170.2017.0131]
Tang R G, Shen F, Pan Y Q, Liu K, Li M Y, Gao W L and Zang C K. 2019. Cross-Comparison of ocean color products derived from Tiangong-2/WIS and GOCI in the Yangtze estuary, China//Proceedings of the Tiangong-2 Remote Sensing Application Conference, Lecture Notes in Electrical Engineering. Singapore: Springer, 541: 201-211 [DOI: 10.1007/978-981-13-3501-3_19http://dx.doi.org/10.1007/978-981-13-3501-3_19]
Tang Y Y, Wei J, Huang X X, Feng X and Song Q J. 2019. Research on on-Board calibration system of Tiangong-2 Wide-Band Imaging Spectrometer//Proceedings of the Tiangong-2 Remote Sensing Application Conference, Lecture Notes in Electrical Engineering. Singapore: Springer, 541: 28-39 [DOI: 10.1007/978-981-13-3501-3_3http://dx.doi.org/10.1007/978-981-13-3501-3_3]
Wei J H. 2016. The Tiangong-2 has been successfully launched which is China's first space laboratory. Aerospace China, (10): 9 (魏京华. 2016. 我国首个空间实验室天宫二号发射成功. 中国航天, (10): 9)
Xing J and Meng D. 2019. Wetland monitoring application in Panjin City based on remote sensing data of Wide-Band Imaging Spectrometer of Tiangong-2//Proceedings of the Tiangong-2 Remote Sensing Application Conference, Lecture Notes in Electrical Engineering. Singapore: Springer, 541: 300-311 [DOI: 10.1007/978-981-13-3501-3_28http://dx.doi.org/10.1007/978-981-13-3501-3_28]
Zhou Y J and Tian Q J. 2008. Image quality evaluation of EO-1 Hyperion sensor. Geo-Information Science, 10(5): 678-683
周雨霁, 田庆久. 2008. EO-1 Hyperion高光谱数据的质量评价. 地球信息科学, 10(5): 678-683
Zou J L, Liu C L, Yin G Q and Tang Z P. 2015. Spatial patterns and economic effects of China's trade with countries along the Belt and Road. Progress in Geography, 34(5): 598-605
邹嘉龄, 刘春腊, 尹国庆, 唐志鹏. 2015. 中国与“一带一路”沿线国家贸易格局及其经济贡献. 地理科学进展, 34(5): 598-605 [DOI: 10.11820/dlkxjz.2015.05.008http://dx.doi.org/10.11820/dlkxjz.2015.05.008]