融合多源时序遥感数据大尺度不透水面覆盖率估算
Estimation of large-scale impervious surface percentage by fusion of multi-source time series remote sensing data
- 2020年24卷第10期 页码:1243-1254
纸质出版日期: 2020-10-07
DOI: 10.11834/jrs.20209450
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-10-07 ,
扫 描 看 全 文
李方刚,李二珠,阿里木·赛买提,张连蓬,刘伟,胡晋山.2020.融合多源时序遥感数据大尺度不透水面覆盖率估算.遥感学报,24(10): 1243-1254
Li F G,Li E Z,Samat A,Zhang L P,Liu W and Hu J S. 2020. Estimation of large-scale impervious surface percentage by fusion of multi-source time series remote sensing data. Journal of Remote Sensing(Chinese), 24(10):1243-1254[DOI:10.11834/jrs.20209450]
不透水面信息是监测城市扩张及区域生态环境变化研究的重要指标,基于遥感技术对地表不透水面信息进行快速提取具有重要意义。传统大范围不透水面覆盖率估算模型主要基于单一遥感信息与不透水面比例之间的相关性,通过单因子回归模型实现不透水面覆盖率的估算。受限于单一遥感信息的信息量及普适性等影响,这类方法在大尺度不透水面提取中具有较大局限性,估算结果的区域适应性存在较大差异。针对该问题,本文提出基于多特征遥感信息进行不透水面估算的方法,以弥补单一特征在大范围不透水面提取中的不确定性。该方法首先以多时相MOD13Q1、MOD09A1产品、夜间灯光数据(NPP-VIIRS)和Landsat 8 OLI为遥感数据源,从不同角度构建突出不透水面信息的多个指数特征;在此基础上利用多元回归模型建立多因子不透水面覆盖率估算模型,进而实现大尺度不透水面覆盖率的遥感估算。本研究选择分布于全国范围内13个典型城市作为主要研究区对提出的模型进行了验证,结果表明:该方法能够适应不同区域不透水面覆盖率的估算,在复杂城市区域表现出较传统方法更好的效果,明显改善了城市内部不透水面覆盖率的估算精度。
Impervious surface information is an important indicator for monitoring urban expansion and regional ecological environment change. Extracting impervious surface information based on remote sensing technology is of great importance. The traditional large-scale impervious surface percentage estimation model is estimated by a single-factor regression model based on the correlation between the specific remote sensing information and the impervious surface ratio. Given the influence of the amount of information and universality of specific remote sensing information
these methods have considerable limitations in large-scale impervious surface extraction
and their regional adaptability of estimation results is slightly different. To address this problem
this study proposes a method for estimating the impervious surface based on multiple features remote sensing information to compensate for the uncertainty of single feature in large-scale impervious surface extraction. First
MOD13Q1
MOD09A1 products
nighttime lighting data (NPP-VIIRS)
and Landsat 8 OLI are used as remote sensing data sources to construct multiple index features of impervious surface information from different angles. On this basis
a multi-regression model is used to establish a multifactor impervious surface percentage estimation model to realize remote sensing estimation of large-scale impervious surface percentage. This study selects 13 typical cities across the country as the main research area to verify the proposed model. Results show that the method can adapt to the estimation of impervious surface percentage in different regions and that it is better than traditional methods in complex urban areas. The effect has significantly improved the accuracy of the estimation of impervious surface percentage within the city.
遥感不透水面多特征夜间灯光Landsat 8 OLIMODIS中国
remote sensingimpervious surfacemulti-featuresnight lightsLandsat 8 OLIMODIS
Arnold Jr C L and Gibbons C J. 1996. Impervious surface coverage: the emergence of a key environmental indicator. Journal of the American Planning Association, 62(2): 243-258 [DOI: 10.1080/01944369608975688http://dx.doi.org/10.1080/01944369608975688]
Bauer M E, Loffelholz B C and Wilson B. 2007. Estimating and mapping impervious surface area by regression analysis of Landsat imagery//Weng Q H, ed. Remote Sensing of Impervious Surfaces. Boca Raton, Florida: CRC Press: 3-19
Brabec E, Schulte S and Richards P L. 2002. Impervious surfaces and water quality: a review of current literature and its implications for watershed planning. Journal of Planning Literature, 16(4): 499-514 [DOI: 10.1177/088541202400903563http://dx.doi.org/10.1177/088541202400903563]
Deng C B and Wu C S. 2012. BCI: a biophysical composition index for remote sensing of urban environments. Remote Sensing of Environment, 127: 247-259 [DOI: 10.1016/j.rse.2012.09.009http://dx.doi.org/10.1016/j.rse.2012.09.009]
Guo W, Li G Y, Ni W J, Zhang Y H and Lu D S. 2018. Exploring improvement of impervious surface estimation at national scale through integration of nighttime light and Proba-V data. GIScience and Remote Sensing, 55(5): 699-717 [DOI: 10.1080/15481603.2018.1436425http://dx.doi.org/10.1080/15481603.2018.1436425]
Hao R F, Yu D Y, Sun Y, Cao Q, Liu Y and Liu Y P. 2015. Integrating multiple source data to enhance variation and weaken the blooming effect of DMSP-OLS light. Remote Sensing, 7(2): 1422-1440 [DOI: 10.3390/rs70201422http://dx.doi.org/10.3390/rs70201422]
Hu X F and Weng Q H. 2011. Impervious surface area extraction from IKONOS imagery using an object-based fuzzy method. Geocarto International, 26(1): 3-20 [DOI: 10.1080/10106049.2010.535616http://dx.doi.org/10.1080/10106049.2010.535616]
Imhoff M L, Zhang P, Wolfe R E and Bounoua L. 2010. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment, 114(3): 504-513 [DOI: 10.1016/j.rse.2009.10.008http://dx.doi.org/10.1016/j.rse.2009.10.008]
Li L W and Lu D S. 2016. Mapping population density distribution at multiple scales in Zhejiang Province using Landsat Thematic Mapper and census data. International Journal of Remote Sensing, 37(18): 4243-4260 [DOI: 10.1080/01431161.2016.1212422http://dx.doi.org/10.1080/01431161.2016.1212422]
Li W N. 2013. Study on Extraction Methods of Impervious Surface Information Extraction from Urban Area Using Remote Sensing. Taiyuan: North University of China
李玮娜. 2013. 基于遥感技术的城市不透水面信息的提取应用. 太原: 中北大学
Liu C, Shao Z F, Chen M and Luo H. 2013. MNDISI: a multi-source composition index for impervious surface area estimation at the individual city scale. Remote Sensing Letters, 4(8): 803-812 [DOI: 10.1080/2150704X.2013.798710http://dx.doi.org/10.1080/2150704X.2013.798710]
Lu D S, Moran E and Hetrick S. 2011. Detection of impervious surface change with multitemporal Landsat images in an urban–rural frontier. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3): 298-306 [DOI: 10.1016/j.isprsjprs.2010.10.010http://dx.doi.org/10.1016/j.isprsjprs.2010.10.010]
Lu D S, Li G Y, Kuang W H and Moran E. 2014. Methods to extract impervious surface areas from satellite images. International Journal of Digital Earth, 7(2): 93-112 [DOI: 10.1080/17538947.2013.866173http://dx.doi.org/10.1080/17538947.2013.866173]
Powell S L, Cohen W B, Yang Z Q, Pierce J D and Alberti M. 2008. Quantification of impervious surface in the Snohomish water resources inventory area of western Washington from 1972-2006. Remote Sensing of Environment, 112(4): 1895-1908 [DOI: 10.1016/j.rse.2007.09.010http://dx.doi.org/10.1016/j.rse.2007.09.010]
Roy S S and Yuan F. 2009. Trends in extreme temperatures in relation to urbanization in the Twin Cities Metropolitan Area, Minnesota. Journal of Applied Meteorology and Climatology, 48(3): 669-679 [DOI: 10.1175/2008JAMC1983.1http://dx.doi.org/10.1175/2008JAMC1983.1]
Tang F and Xu H Q. 2014. Comparison of performances in retrieving impervious surface between Hyperspectral (Hyperion) and multispectral (TM/ETM+) images. Spectroscopy and Spectral Analysis, 34(4): 1075-1080
唐菲, 徐涵秋. 2014. 高光谱与多光谱遥感影像反演地表不透水面的对比——以Hyperion和TM/ETM+为例. 光谱学与光谱分析, 34(4): 1075-1080 [DOI: 10.3964/j.issn.1000-0593201404-1075-06http://dx.doi.org/10.3964/j.issn.1000-0593201404-1075-06]
Weng Q H. 2012. Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends. Remote Sensing of Environment, 117: 34-49 [DOI: 10.1016/j.rse.2011.02.030http://dx.doi.org/10.1016/j.rse.2011.02.030]
Wu C S and Murray A T. 2003. Estimating impervious surface distribution by spectral mixture analysis. Remote Sensing of Environment, 84(4): 493-505 [DOI: 10.1016/S0034-4257(02)00136-0http://dx.doi.org/10.1016/S0034-4257(02)00136-0]
Xu H Q. 2007. A new index-based built-up index (IBI) and its eco-environmental significance. Remote Sensing Technology and Application, 22(3): 301-308
徐涵秋. 2007. 一种基于指数的新型遥感建筑用地指数及其生态环境意义. 遥感技术与应用, 22(3): 301-308 [DOI: 10.11873/j.issn.1004-0323.2007.3.301http://dx.doi.org/10.11873/j.issn.1004-0323.2007.3.301]
Xu H Q. 2010. Analysis of impervious surface and its impact on urban heat environment using the normalized difference impervious surface index (NDISI). Photogrammetric Engineering and Remote Sensing, 76(5): 557-565 [DOI: 10.14358/PERS.76.5.557http://dx.doi.org/10.14358/PERS.76.5.557]
Yang X J and Liu Z. 2005. Use of satellite-derived landscape imperviousness index to characterize urban spatial growth. Computers, Environment and Urban Systems, 29(5): 524-540 [DOI: 10.1016/j.compenvurbsys.2005.01.005http://dx.doi.org/10.1016/j.compenvurbsys.2005.01.005]
Zha Y, Ni S X and Yang S. 2003. An effective approach to automatically extract urban land-use from TM imagery. Journal of Remote Sensing, 7(1): 37-40
查勇, 倪绍祥, 杨山. 一种利用TM图像自动提取城镇用地信息的有效方法. 遥感学报, 7(1): 37-40) [ DOI: 10.3321/j.issn:1007-4619.2003.01.007http://dx.doi.org/10.3321/j.issn:1007-4619.2003.01.007]
Zhang Q L, Schaaf C and Seto K C. 2013. The vegetation adjusted NTL urban index: a new approach to reduce saturation and increase variation in nighttime luminosity. Remote Sensing of Environment, 129: 32-41 [DOI: 10.1016/j.rse.2012.10.022http://dx.doi.org/10.1016/j.rse.2012.10.022]
Zhou W and Troy A. 2008. An object-oriented approach for analysing and characterizing urban landscape at the parcel level. International Journal of Remote Sensing, 29(11): 3119-3135 [DOI: 10.1080/01431160701469065http://dx.doi.org/10.1080/01431160701469065]
相关作者
相关机构