星载红外高光谱传感器温度廓线反演综述
Review of temperature profile inversion of satellite-borne infrared hyperspectral sensors
- 2021年25卷第2期 页码:577-598
纸质出版日期: 2021-02-07
DOI: 10.11834/jrs.20210009
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-02-07 ,
扫 描 看 全 文
曹西凤,李小英,罗琪,刘双慧,李鹏,刘欣.2021.星载红外高光谱传感器温度廓线反演综述.遥感学报,25(2): 577-598
Cao X F,Li X Y,Luo Q,Liu S H,Li P and Liu X. 2021. Review of temperature profile inversion of satellite-borne infrared hyperspectral sensors. National Remote Sensing Bulletin, 25(2):577-598
全球变暖是当前国际社会的热点话题,温度廓线是大气热力状态的重要参数,准确高效地获取其时空分布信息是天气预报和气候变化研究的前提。与传统的地面观测方式相比,卫星探测数据具有高空间、时间分辨率的优势,为气象观测提供了数据支持。本文分别针对星载红外高光谱传感器3种常见观测模式(天底、掩星及临边观测模式)下的国外7个传感器代表(IMG、AIRS、IASI、HALOE、TES、MIPAS、ACE-FTS)及国内大气探测卫星(风云系列和高分系列)在参数、性能和用途等3个方面进行介绍,得出当前国际上天底观测可提供垂直方向1 km内温度产品精度小于1 K,TES临边观测模式可提供的对流层温度廓线产品精度最高可达0.5 K,均满足NWP精度要求,可有效的用于天气预报及气候变化研究;由辐射传输方程出发,对气温廓线反演的3种常用方法(统计回归、物理及人工神经网络反演)的基本原理、特点及发展历程进行了对比分析。同时,就温度廓线反演算法的关键问题及可能的解决方案进行了阐述;并对误差(平滑、模型参数及测量误差)产生及其传播原理进行系统地归纳总结。最后,提出现阶段气温探测过程中存在的问题。
Global warming is a hot topic in recent years as it can lead to temperature increasing
more frequent extreme weather
etc. Temperature is an important parameter to characterize the thermodynamic state of the atmosphere. The distribution of temperature affects the radiation flux of long-wave and short-wave
which in turn plays a significant role in the balance of global energy radiation budget. Therefore
understanding the spatial and temporal distribution of atmospheric temperature and its long-term variation comprehensively are essential for our research on weather forecast and climate change research.
Presently
many ground-based and space borne sensors have been developed for temperature detection. Space borne sensors observe temperature by nadir viewing
occultation detection
or limb sounding. Space borne sensors have a high spatial and temporal resolution
which can provide sufficient data for scientific research. In this paper
seven foreign hyperspectral sensors (IMG
AIRS
IASI
HALOE
HALOE
TES
MIPAS
ACE-FTS) and domestic sensors (the series of FY and GF) are introduced in terms of parameters
performance
and application. These sensors acquire the information of atmospheric parameters through the radiation in infrared band. Occultation and limb observation are less affected by the underlying surface and have high vertical resolution and sensitivity
such as HALOE
MIPAS
ACE-FTS
TES
etc. So far
the accuracy of temperature products of nadir observation (AIRS and IASI) is less than 1K with a vertical direction of 1 km
and the accuracy of temperature products in the troposphere by TES limb observation can reach 0.5 K. All of them meet the requirement of Numerical Weather Prediction and can be used widely in weather forecasting and climate change research.
The accuracy of temperature profiles of the Feng Yun series is comparable to that of IASI
but the spatial and temporal resolution are needed to be improved. The radiation transfer is the basis for trace gas inversion. Firstly
we introduced the radiation transfer equations of nadir viewing
occultation detection
or limb sounding. The radiation transfer process of limb observation is similar to that of occultation detection
in which line-of-sight reaching a down-looking sensor is entirely above the ground. Then
three retrieval methods (statistical regression
physical inversion
and artificial neural network inversion) of temperature profile are described in terms of principles
characteristics
and development history. The advantages and disadvantages of them are also compared. The statistical regression method is simple and efficient
but the accuracy is relatively lower
which is usually used as the
a priori
profiles for the physical algorithm. The accuracy of physical inversion is improved obviously
but the retrieval process of is complex and the
a priori
profiles are needed in physical inversion. The artificial neural network method can acquire the temperature profile accurately and efficiently
but a variety of samples are needed for training. Meanwhile
the key problems that the influence of the cloud
aerosol
and surface reflectivity on temperature retrieval are described
and the possible solutions are then given
respectively. The generation and propagation of error (smoothness
model parameter
and measurement error) in temperature retrieval are summarized. Finally
the problems existing in atmospheric temperature inversion are proposed.
星载红外高光谱传感器大气温度廓线辐射传输关键问题误差分析
satellite-borne infrared hyperspectral sensoratmospheric temperature profileradiation transmissionkey issueserror analysis
Abbot J and Marohasy J. 2017. Skilful rainfall forecasts from artificial neural networks with long duration series and single-month optimization. Atmospheric Research, 197: 289-299 [DOI: 10.1016/j.atmosres.2017.07.015http://dx.doi.org/10.1016/j.atmosres.2017.07.015]
Achtor T H, Huang H L, Gumley L E, Li J and Woolf H M. 2003. Software packages for direct broadcast data processing of ATOVS, MODIS and AIRS Radiances//Proceedings Volume 4891, Optical Remote Sensing of the Atmosphere and Clouds III. Hangzhou: SPIE: 546-548 [DOI: 10.1117/12.473251http://dx.doi.org/10.1117/12.473251]
Aires F, Chédin A, Scott N A and Rossow W B. 2002a. A regularized neural net approach for retrieval of atmospheric and surface temperatures with the IASI instrument. Journal of Applied Meteorology, 41(2): 144-159 [DOI: 10.1175/1520-0450(2002)041<0144:ARNNAF>2.0.CO;2http://dx.doi.org/10.1175/1520-0450(2002)041<0144:ARNNAF>2.0.CO;2]
Aires F, Rossow W B, Scott N A and Chédin A. 2002b. Remote sensing from the infrared atmospheric sounding interferometer instrument 2. Simultaneous retrieval of temperature, water vapor, and ozone atmospheric profiles. Journal of Geophysical Research: Atmospheres, 107(D22): 4620 [DOI: 10.1029/2001JD001591http://dx.doi.org/10.1029/2001JD001591]
Anthes R A. 2011. Exploring Earth’s atmosphere with radio occultation: contributions to weather, climate and space weather. Atmospheric Measurement Techniques, 4(6): 1077-1103 [DOI: 10.5194/amt-4-1077-2011http://dx.doi.org/10.5194/amt-4-1077-2011]
Arel I, Rose D C and Karnowski T P. 2010. Deep machine learning-a new frontier in artificial intelligence research. IEEE Computational Intelligence Magazine, 5(4): 13-18 [DOI: 10.1109/MCI.2010.938364http://dx.doi.org/10.1109/MCI.2010.938364]
Aumann H H, Pagano T S and Strow L L. 2001. Atomospheric infrared sounder (AIRS) on the earth observing system//Proceedings of SPIE 4151, Hyperspectral Remote Sensing of the Land and Atmosphere. Sendai: SPIE: 115-125 [DOI: 10.1117/12.416998http://dx.doi.org/10.1117/12.416998]
Azid A, Juahir H, Toriman M E, Kamarudin M K A, Saudi A S M, Hasnam C N C, Aziz N A A, Azaman F, Latif M T, Zainuddin S F M, Osman M R and Yamin M. 2014. Prediction of the level of air pollution using principal component analysis and artificial neural network techniques: a case study in Malaysia. Water, Air, and Soil Pollution, 225(8): 2063-2076 [DOI: 10.1007/s11270-014-2063-1http://dx.doi.org/10.1007/s11270-014-2063-1]
Baboo S S and Shereef I K. 2010. An efficient weather forecasting system using artificial neural network. International Journal of Environmental Science and Development, 1(4): 321-326 [DOI: 10.7763/IJESD.2010.V1.63http://dx.doi.org/10.7763/IJESD.2010.V1.63]
Bao Y S, Wang Z J, Chen Q, Zhou A M, Dong Y H and Min J Z. 2017. Preliminary study on atmospheric temperature profiles retrieval from GIIRS based on FY-4A satellite. Aerospace Shanghai, 34(4): 28-37
鲍艳松, 汪自军, 陈强, 周爱明, 董瑶海, 闵锦忠. 2017. FY-4A星GIIRS大气温度廓线反演模拟试验研究. 上海航天, 34(4): 28-37 [DOI: 10.19328/j.cnki.1006-1630.2017.04.004http://dx.doi.org/10.19328/j.cnki.1006-1630.2017.04.004]
Beer R, Glavich T A and Rider D M. 2001. Tropospheric emission spectrometer for the Earth Observing System’s Aura satellite. Applied Optics, 40(15): 2356-2367 [DOI: 10.1364/AO.40.002356http://dx.doi.org/10.1364/AO.40.002356]
Behrendt A. 2006. Temperature measurements with lidar//Weitkamp C, ed. Lidar. New York: Springer: 237-305 [DOI: 10.1007/0-387-25101-4_10http://dx.doi.org/10.1007/0-387-25101-4_10]
Blackwell W J. 2005. A neural-network technique for the retrieval of atmospheric temperature and moisture profiles from high spectral resolution sounding data. IEEE Transactions on Geoscience and Remote Sensing, 43(11): 2535-2546 [DOI: 10.1109/TGRS.2005.855071http://dx.doi.org/10.1109/TGRS.2005.855071]
Blackwell W J, Bickmeier L J, Leslie R V, Pieper M L, Samra J E and Upham C A. 2011. Hyperspectral microwave atmospheric sounding. IEEE Transactions on Geoscience and Remote Sensing, 49(1): 128-142 [DOI: 10.1109/TGRS.2010.2052260http://dx.doi.org/10.1109/TGRS.2010.2052260]
Blumstein D, Chalon G, Carlier T, Buil C, Hebert P, Maciaszek T, Ponce G, Phulpin T, Tournier B, Simeoni D, Astruc P, Clauss A, Kayal G and Jegou R. 2004. IASI instrument: technical overview and measured performances//Proceedings of SPIE 5543, Infrared Spaceborne Remote Sensing XII. Denver: SPIE: 196-207 [DOI: 10.1117/12.560907http://dx.doi.org/10.1117/12.560907]
Boone C D, Nassar R, Walker K A, Rochon Y, McLeod S D, Rinsland C P and Bernath P F. 2005. Retrievals for the atmospheric chemistry experiment fourier-transform spectrometer. Applied Optics, 44(33): 7218-7231 [DOI: 10.1364/AO.44.007218http://dx.doi.org/10.1364/AO.44.007218]
Borbás É, Menzel W P, Li J and Woolf H M. 2003. Combining radio occultation refractivities and IR/MW radiances to derive temperature and moisture profiles: a simulation study plus early results using CHAMP and ATOVS. Journal of Geophysical Research: Atmospheres, 108(D21): 4676 [DOI: 10.1029/2003JD003386http://dx.doi.org/10.1029/2003JD003386]
Bowman K W, Rodgers C D, Kulawik S S, Worden J, Sarkissian E, Osterman G, Steck T, Lou M, Eldering A, Shephard M, Worden H, Lampel M, Clough S, Brown P, Rinsland C, Gunson M and Beer R. 2006. Tropospheric emission spectrometer: retrieval method and error analysis. IEEE Transactions on Geoscience and Remote Sensing, 44(5): 1297-1307 [DOI: 10.1109/TGRS.2006.871234http://dx.doi.org/10.1109/TGRS.2006.871234]
Carli B, Alpaslan D, Carlotti M, Castelli E, Ceccherini S, Dinelli B M, Dudhia A, Flaud J M, Hoepfner M, Jay V, Magnani L, Oelhaf H, Payne V, Piccolo C, Prosperi M, Raspollini P, Remedios J, Ridolfi M and Spang R. 2004. First results of MIPAS/ENVISAT with operational Level 2 code. Advances in Space Research, 33(7): 1012-1019 [DOI: 10.1016/S0273-1177(03)00584-2http://dx.doi.org/10.1016/S0273-1177(03)00584-2]
Cayla F and Javelle P. 1995. IASI instrument overview// Proceedings of SPIE 2583, Advanced and Next-Generation Satellites. Paris: SPIE: 271-281 [DOI: 10.1117/12.228572http://dx.doi.org/10.1117/12.228572]
Cayla F R. 2001. L'interferomètre IASI-Un nouveau sondeur satellitaire haute résolution. La météorologie, 32(35): 23-39 [DOI: 10.4267/2042/36150http://dx.doi.org/10.4267/2042/36150]
Chahine M T, Pagano T S, Aumann H H, Atlas R, Barnet C, Blaisdell J, Chen L K, Divakarla M, Fetzer E J, Goldberg M, Gautier C, Granger S, Hannon S, Irion F W, Kakar R, Kalnay E, Lambrigtsen B H, Lee S Y, Le Marshall J, McMillan W W, McMillin L, Olsen E T, Revercomb H, Rosenkranz P, Smith W L, Staelin D, Strow L L, Susskind J, Tobin D, Wolf W and Zhou L H. 2006. AIRS: improving weather forecasting and providing new data on greenhouse gases. Bulletin of the American Meteorological Society, 87(7): 911-926 [DOI: 10.1175/BAMS-87-7-911http://dx.doi.org/10.1175/BAMS-87-7-911]
Chahine M T. 1970. Inverse problems in radiative transfer: determination of atmospheric parameters. Journal of the Atmospheric Sciences, 27(6): 960-967 [DOI: 10.1175/1520-0469(1970)027<0960:IPIRTD>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1970)027<0960:IPIRTD>2.0.CO;2]
Chakraborty R and Maitra A. 2016. Retrieval of atmospheric properties with radiometric measurements using neural network. Atmospheric Research, 181: 124-132 [DOI: 10.1016/j.atmosres.2016.05.011http://dx.doi.org/10.1016/j.atmosres.2016.05.011]
Chalon G, Cayla F and Diebel D. 2001. IASI: an advance sounder for operational meteorology//Proceedings of the 52nd Congress of IAF. Toulouse: [s.n.]
Connor T C, Shephard M W, Payne V H, Cady-Pereir K E, Kulawik S S, Luo M, Osterman G and Lampel M. 2011. Long-term stability of TES satellite radiance measurements. Atmospheric Measurement Techniques, 4(7): 1481-1490 [DOI: 10.5194/amt-4-1481-2011http://dx.doi.org/10.5194/amt-4-1481-2011]
Cuomo V, Rlzzi R and Serio C. 1993. An objective and optimal estimation approach to cloud-clearing for infrared sounder measurements. International Journal of Remote Sensing, 14(4): 729-743 [DOI: 10.1080/01431169308904372http://dx.doi.org/10.1080/01431169308904372]
DeSouza-Machado S G, Strow L L, Hannon S E and Motteler H E. 2006. Infrared dust spectral signatures from AIRS. Geophysical Research Letters, 33(3): L03801 [DOI: 10.1029/2005GL024364http://dx.doi.org/10.1029/2005GL024364]
Dutil Y, Lantagne S, Dube S and Poulin R H. 2002. ACE-FTS level 0 to 1 data processing//Proceedings of SPIE 4814, Earth Observing Systems VII. Seattle: SPIE: 102-110 [DOI: 10.1117/12.451779http://dx.doi.org/10.1117/12.451779]
Eriksson P. 2000. Analysis and comparison of two linear regularization methods for passive atmospheric observations. Journal of Geophysical Research: Atmospheres, 105(D14): 18157-18167 [DOI: 10.1029/2000JD900172http://dx.doi.org/10.1029/2000JD900172]
Eyre J R. 1989. Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. I: theory and simulation for TOVS. Quarterly Journal of the Royal Meteorological Society, 115(489): 1001-1026 [DOI: 10.1002/qj.49711548902http://dx.doi.org/10.1002/qj.49711548902]
Fischer H, Birk M, Blom C, Carli B, Carlotti M, Von Clarmann T, Delbouille L, Dudhia A, Ehhalt D, Endemann M, Flaud J M, Gessner R, Kleinert A, Koopman R, Langen J, López-Puertas M, Mosner P, Nett H, Oelhaf H, Perron G, Remedios J, Ridolfi M, Stiller G, and Zander R. 2008. MIPAS: an instrument for atmospheric and climate research. Atmospheric Chemistry and Physics, 8(8): 2151-2188 [DOI: 10.5194/acp-8-2151-2008http://dx.doi.org/10.5194/acp-8-2151-2008]
Fletcher R. 1987. Practical Methods of Optimization. New York: Wiley: 18-22
Goldberg M D, Qu Y, McMillin L M, Wolf W W, Zhou L H and Divakarla M. 2003. AIRS near-real-time products and algorithms in support of operational numerical weather prediction. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 379-389 [DOI: 10.1109/TGRS.2002.808307http://dx.doi.org/10.1109/TGRS.2002.808307]
Gu J X. 2004. The design of Fourier transform spectrometer for atmospheric chemical experiments (part 1). Infrared, (10): 40-45 (顾聚兴. 2004. 用于大气化学实验的傅里叶变换光谱仪的设计(上). 红外, (10): 40-45)
Hagan M T, Demuth H B and Beale D M. 2002. Neural Network Design. Beijing: China Machine Press: 1-10
Harries J E, Russell III J M, Tuck A F, Gordley L L, Purcell P, Stone K, Bevilacqua R M, Gunson M, Nedoluha G and Traub W A. 1996. Validation of measurements of water vapor from the halogen occultation experiment (HALOE). Journal of Geophysical Research: Atmospheres, 101(D6): 10205-10216 [DOI: 10.1029/95JD02933http://dx.doi.org/10.1029/95JD02933]
Hayden C M. 1988. GOES-VAS simultaneous temperature-moisture retrieval algorithm. Journal of Applied Meteorology, 27(6): 705-733 [DOI: 10.1175/1520-0450(1988)027<0705:GVSTMR>2.0.CO;2http://dx.doi.org/10.1175/1520-0450(1988)027<0705:GVSTMR>2.0.CO;2]
He Q R. 2017. Study on Retrieving the Atmospheric Temperature and Humidity Profiles from Measurements of Microwave Humidity and Temperature Sounder on FY-3C Satellite. Beijing: University of Chinese Academy of Sciences (National Space Science Center, the Chinese Academy of Sciences): 1-5 (贺秋瑞. 2017. FY-3C卫星微波湿温探测仪反演大气温湿廓线研究. 北京: 中国科学院大学(中国科学院国家空间科学中心): 1-5)
Hervig M E, Russell III J M, Gordley L L, Drayson S R, Stone K, Thompson R E, Gelman M E, McDermid I S, Hauchecorne A, Keckhut P, McGee T J, Singh U N and Gross M R. 1996. Validation of temperature measurements from the halogen occultation experiment. Journal of Geophysical Research: Atmospheres, 101(D6): 10277-10285 [DOI: 10.1029/95JD01713http://dx.doi.org/10.1029/95JD01713]
Hu W D, Ji J J, Liu R T, Wang W Q and Ligthart L P. 2017. Terahertz atmospheric remote sensing technology. Chinese Optics, 10(5): 656-666
胡伟东, 季金佳, 刘瑞婷, 王雯琦, Ligthart L P. 2017. 太赫兹大气遥感技术. 中国光学, 10(5): 656-666 [DOI: 10.3788/CO.20171005.0656http://dx.doi.org/10.3788/CO.20171005.0656]
Huang H L and Smith W L. 2005. Apperception of clouds in AIRS data. Technical Report. 155-169
Huang J. 2006. The Study on the Algorithm of Retrieving the Temperature and Moisture Profile from Satellite Infrared Measurements. Lanzhou: Lanzhou University: 1-4
黄静. 2006. 利用卫星红外辐射资料反演大气温湿廓线的算法研究. 兰州: 兰州大学: 1-4
Huang Y W, Liu Q, He M, Chen Y H, Zhao B K, Xia W Z and Liu T Q. 2019. Research on inversion precision of temperature profile of GIIRS/FY-4A satellite in Shanghai typhoon season based on radiosonde data. Infrared, 40(9): 28-38
黄艺伟, 刘琼, 何敏, 陈勇航, 赵兵科, 夏卫祖, 刘统强. 2019. 基于探空资料的上海台风季GIIRS/FY-4A卫星温度廓线反演精度研究. 红外, 40(9): 28-38 [DOI: 10.3969/j.issn.1672-8785.2019.09.006http://dx.doi.org/10.3969/j.issn.1672-8785.2019.09.006]
Jang J D, Viau A A and Anctil F. 2004. Neural network estimation of air temperatures from AVHRR data. International Journal of Remote Sensing, 25(21): 4541-4554 [DOI: 10.1080/0143116031000 1657533http://dx.doi.org/10.1080/01431160310001657533]
Jiang D M. 2007. Approach to High Spectral Resolution Infrared Remote Sensing of Atmospheric Temperature and Humidity Profiles. Nanjing: Nanjing University of Information Science and Technology: 5-20
蒋德明. 2007. 高光谱分辨率红外遥感大气温湿度廓线反演方法研究. 南京: 南京信息工程大学: 5-20
Jurado-Navarro Á A, López-Puertas M, Funke B, García-Comas M, Gardini A, González-Galindo F, Stiller G P, Von Clarmann T, Grabowski U and Linden A. 2016. Global distributions of CO2 volume mixing ratio in the middle and upper atmosphere from daytime mipas high-resolution spectra. Atmospheric Measurement Techniques, 9(12): 6081-6100 [DOI: 10.5194/amt-9-6081-2016http://dx.doi.org/10.5194/amt-9-6081-2016]
Kaplan L D. 1959. Inference of atmospheric structure from remote radiation measurements. Journal of the Optical Society of America, 49(10): 1004-1007 [DOI: 10.1364/JOSA.49.001004http://dx.doi.org/10.1364/JOSA.49.001004]
King J I F. 1956. The radiative heat transfer of planet earth//Van Allen J A, ed. Scientific Uses of Earth Satellites. Ann Arbor: University of Michigan Press: 133-136
King M D, Menzel W P, Kaufman Y J, Tanré D, Gao B C, Platnick S, Ackerman S A, Remer L A, Pincus R and Hubanks P A. 2003. Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 442-458 [DOI: 10.1109/TGRS.2002.808226http://dx.doi.org/10.1109/TGRS.2002.808226]
Kobayashi H, Shimota A, Yoshigahara C, Yoshida I, Uehara Y and Kondo K. 1999. Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation. IEEE Transactions on Geoscience and Remote Sensing, 37(3): 1496-1507 [DOI: 10.1109/36.763262http://dx.doi.org/10.1109/36.763262]
Le Marshall J, Jung J, Derber J, Treadon R, Lord S, Goldberg M, Wolf W, Liu H C, Joiner J, Woollen J, Todling R, Van Delst P and Tahara Y. 2005. AIRS hyperspectral data improves southern hemisphere forecasts. Australian Meteorological Magazine, 54(1): 57-60
Levenberg K. 1944. A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 2(2): 164-179 [DOI: 10.1090/qam/10666http://dx.doi.org/10.1090/qam/10666]
Li J, Liu C Y, Huang H L, Schmit T J, Wu X B, Menzel W P and Gurka J J. 2005. Optimal cloud-clearing for AIRS radiances using MODIS. IEEE Transactions on Geoscience and Remote Sensing, 43(6): 1266-1278 [DOI: 10.1109/TGRS.2005.847795http://dx.doi.org/10.1109/TGRS.2005.847795]
Li J, Wolf W W, Menzel W P, Zhang W J, Huang H L and Achtor T H. 2000. Global soundings of the atmosphere from ATOVS measurements: the algorithm and validation. Journal of Applied Meteorology, 39(8): 1248-1268 [DOI: 10.1175/1520-0450(2000)039<1248:GSOTAF>2.0.CO;2http://dx.doi.org/10.1175/1520-0450(2000)039<1248:GSOTAF>2.0.CO;2]
Li X Y, Chen L F, Su L, Zhang Y and Tao J H. 2013. Overview of sub-millimeter limb sounding. Journal of Remote Sensing, 17(6): 1325-1344
李小英, 陈良富, 苏林, 张莹, 陶金花. 2013. 亚毫米波临边探测发展现状. 遥感学报, 17(6): 1325-1344 [DOI: 10.11834/jrs.20132279http://dx.doi.org/10.11834/jrs.20132279]
Li X Y, Xu J, Cheng T H, Shi H L, Zhang X Y, Ge S L, Wang H M, Zhu S Y, Miao J and Luo Q. 2019. Monitoring trace gases over the Antarctic using atmospheric infrared Ultraspectral sounder onboard GaoFen-5: algorithm description and first retrieval results of O3, H2O, and HCl. Remote Sensing, 11(17): 1991 [DOI: 10.3390/rs11171991http://dx.doi.org/10.3390/rs11171991]
Li Z L, Li J, Menzel W P, Nelson III J P, Schmit T J, Weisz E and Ackerman S A. 2009. Forecasting and nowcasting improvement in cloudy regions with high temporal GOES sounder infrared radiance measurements. Journal of Geophysical Research: Atmosphere, 114(D9): D09216 [DOI: 10.1029/2008JD010596http://dx.doi.org/10.1029/2008JD010596]
Liu C L, Kirchengast G, Syndergaard S, Kursinski E R, Sun Y Q, Bai W H and Du Q F. 2017. A review of low Earth orbit occultation using microwave and infrared-laser signals for monitoring the atmosphere and climate. Advances in Space Research, 60(12): 2776-2811 [DOI: 10.1016/j.asr.2017.05.011http://dx.doi.org/10.1016/j.asr.2017.05.011]
Liu D, Yang Y Y, Zhou Y D, Huang H L, Cheng Z T, Luo J, Zhang Y P, Duan L L, Shen Y B, Bai J and Wang K W. 2015. High spectral resolution lidar for atmosphere remote sensing: a review. Infrared and Laser Engineering, 44(9): 2535-2546
刘东, 杨甬英, 周雨迪, 黄寒璐, 成中涛, 罗敬, 张与鹏, 段绿林, 沈亦兵, 白剑, 汪凯巍. 2015. 大气遥感高光谱分辨率激光雷达研究进展. 红外与激光工程, 44(9): 2535-2546
Livesey N J, Van Snyder W, Read W G and Wagner P A. 2006. Retrieval algorithms for the EOS microwave limb sounder (MLS). IEEE Transactions on Geoscience and Remote Sensing, 44(5): 1144-1155 [DOI: 10.1109/TGRS.2006.872327http://dx.doi.org/10.1109/TGRS.2006.872327]
López-Puertas M, García-Comas M, Funke B, Gardini A, Stiller G P, Von Clarmann T, Glatthor N, Laeng A, Kaufmann M, Sofieva V F, Froidevaux L, Walker K A and Shiotani M. 2018. MIPAS observations of ozone in the middle atmosphere. Atmospheric Measurement Techniques, 11(4): 2187-2212 [DOI: 10.5194/amt-11-2187-2018http://dx.doi.org/10.5194/amt-11-2187-2018]
Lorenc A C. 1988. Optimal nonlinear objective analysis. Quarterly Journal of the Royal Meteorological Society, 114(479): 205-240 [DOI: 10.1002/qj.49711447911http://dx.doi.org/10.1002/qj.49711447911]
Lubrano A M, Serio C, Clough S A and Kobayashi H. 2000. Simultaneous inversion for temperature and water vapor from IMG radiances. Geophysical Research Letters, 27(16): 2533-2536. [DOI: 10.1029/1999GL011059http://dx.doi.org/10.1029/1999GL011059]
Luo Q, Li X Y, Cheng T H, Zhang X Y, Ge S L and Zhang Y G. 2019. Design and implementation of atmospheric retrieval system for AIUS. Spacecraft Recovery and Remote Sensing, 40(6): 67-76
罗琪, 李小英, 程天海, 张兴赢, 葛曙乐, 张玉贵. 2019. 红外甚高光谱分辨率探测仪反演系统的设计与实现. 航天返回与遥感, 40(6): 67-76 [DOI: 10.3969/j.issn.1009-8518.2019.06.009http://dx.doi.org/10.3969/j.issn.1009-8518.2019.06.009]
Lv X S, Tian B, Liang X, Tan Y L and Liu S L. 2019. An inversion method of atmospheric temperature and water vapor density profile based on RBF neural network. Ship Electronic Engineering, 39(4): 29-33
吕新帅, 田斌, 梁翔, 谭玉霖, 刘圣良. 2019. 一种基于RBF神经网络的大气温度及水汽密度廓线反演方法. 舰船电子工程, 39(4): 29-33
Ma X L, Wan Z M, Moeller C C, Menzel W P and Gumley L E. 2002. Simultaneous retrieval of atmospheric profiles, land-surface temperature, and surface emissivity from Moderate-Resolution Imaging Spectroradiometer thermal infrared data: extension of a two-step physical algorithm. Applied Optics, 41(5): 909-924 [DOI: 10.1364/AO.41.000909http://dx.doi.org/10.1364/AO.41.000909]
Ma X L, Wan Z M, Moeller C C, Menzel W P, Gumley L E and Zhang Y L. 2000. Retrieval of geophysical parameters from Moderate Resolution Imaging Spectroradiometer thermal infrared data: evaluation of a two-step physical algorithm. Applied Optics, 39(20): 3537-3550 [DOI: 10.1364/AO.39.003537http://dx.doi.org/10.1364/AO.39.003537]
Marquardt D W. 1963. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2): 431-441
Masiello G and Serio C. 2013. Simultaneous physical retrieval of surface emissivity spectrum and atmospheric parameters from infrared atmospheric sounder interferometer spectral radiances. Applied Optics, 52(11): 2428-2446 [DOI: 10.1364/AO.52.002428http://dx.doi.org/10.1364/AO.52.002428]
Meibodi M E, Vafaie-Sefti M, Rashidi A M, Amrollahi A, Tabasi M and Kalal H S. 2010. An estimation for velocity and temperature profiles of nanofluids in fully developed turbulent flow conditions. International Communications in Heat and Mass Transfer, 37(7): 895-900 [DOI: 10.1016/j.icheatmasstransfer.2010.03.012http://dx.doi.org/10.1016/j.icheatmasstransfer.2010.03.012]
Milstein A B and Blackwell W J. 2016. Neural network temperature and moisture retrieval algorithm validation for AIRS/AMSU and CrIS/ATMS. Journal of Geophysical Research: Atmospheres, 121(4): 1414-1430 [DOI: 10.1002/2015JD024008http://dx.doi.org/10.1002/2015JD024008]
Nutkiewicz A, Yang Z and Jain R K. 2018. Data-driven urban energy simulation (DUE-S): a framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow. Applied Energy, 225: 1176-1189 [DOI: 10.1016/j.apenergy.2018.05.023http://dx.doi.org/10.1016/j.apenergy.2018.05.023]
Oelhaf H. 2008. MIPAS Mission Plan, ESA Technical Note ENVISPPA-EOPG-TN-07-0073, ESA-ESRIN. Frascati, Italy
Osterman G B, Neu J L, Cady-Pereira K, Fu D, Payne V and Pfister G. 2016. Utilizing Tropospheric Emission Spectrometer (TES) special observations to study air quality over megacities: a case study of Mexico City//American Geophysical Union, Fall Meeting. [s.l.]: [s.n.]
Pierangelo C, Chédin A, Heilliette S, Jacquinet-Husson N and Armante R. 2004. Dust altitude and infrared optical depth from AIRS. Atmospheric Chemistry and Physics, 4(7): 1813-1822 [DOI: 10.5194/acp-4-1813-2004http://dx.doi.org/10.5194/acp-4-1813-2004]
Raspollini P, Belotti C, Burgess A, Carli B, Carlotti M, Ceccherini S, Dinelli B M, Dudhia A, Flaud J M, Funke B, Höpfner M, Lopez-Puertas M, Payne V, Piccolo C, Remedios J J, Ridolfi M and Spang R. 2006. MIPAS level 2 operational analysis. Atmospheric Chemistry and Physics Discussions, 6(4): 6525-6585 [DOI: 10.5194/acpd-6-6525-2006http://dx.doi.org/10.5194/acpd-6-6525-2006]
Reber C A, Trevathan C E, McNeal R J and Luther M R. 1993. The upper atmosphere research satellite (UARS) mission. Geophysical Research Letters: Atmospheres, 98(D6): 10643-10647 [DOI: 10.1029/92JD02828http://dx.doi.org/10.1029/92JD02828]
Ren T and Modest M F. 2016. Temperature profile inversion from carbon-dioxide spectral intensities through tikhonov regularization. Journal of Thermophysics and Heat Transfer, 30(1): 211-218 [DOI: 10.2514/1.T4561http://dx.doi.org/10.2514/1.T4561]
Ridolfi M, Blum U, Carli B, Catoire V, Ceccherini S, Claude H, De Clercq C, Fricke K H, Friedl-Vallon F, Iarlori M, Keckhut P, Kerridge B, Lambert J C, Meijer Y J, Mona L, Oelhaf H, Pappalardo G, Pirre M, Rizi V, Robert C, Swart D, Von Clarmann T, Waterfall A and Wetzel G. 2007. Geophysical validation of temperature retrieved by the ESA processor from MIPAS/ENVISAT atmospheric limb-emission measurements. Atmospheric Chemistry and Physics, 7(16): 4459-4487 [DOI: 10.5194/acp-7-4459-2007http://dx.doi.org/10.5194/acp-7-4459-2007]
Rodgers C D. 1976. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Reviews of Geophysics, 14(4): 609-624 [DOI: 10.1029/RG014i004p00609http://dx.doi.org/10.1029/RG014i004p00609]
Rodgers C D. 1990. Characterization and error analysis of profiles retrieved from remote sounding measurements. Journal of Geophysical Research: Atmosphere, 95(D5): 5587-5595 [DOI: 10.1029/JD095iD05p05587http://dx.doi.org/10.1029/JD095iD05p05587]
Rumelhar D E, Hinton G E and Williams R J. 1986. Learning representations by back-propagating errors. Nature, 323(6088): 533-536 [DOI: 10.1038/323533a0http://dx.doi.org/10.1038/323533a0]
Russell III J M, Gordley L L, Park J H, Drayson S R, Hesketh W D, Cicerone R J, Tuck A F, Frederick J E, Harries J E and Crutzen P J. 1993. The halogen occultation experiment. Journal of Geophysical Research: Atmospheres, 98(D6): 10777-10797 [DOI: 10.1029/93JD00799http://dx.doi.org/10.1029/93JD00799]
Seemann S W, Borbas E E, Knuteson R O, Stephenson G R and Huang H L. 2008. Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multispectral satellite radiance measurements. Journal of Applied Meteorology and Climatology, 47(1): 108-123 [DOI: 10.1175/2007JAMC1590.1http://dx.doi.org/10.1175/2007JAMC1590.1]
Seemann S W, Borbas E E, Li J, Menzel W P and Gumley L E. 2006. MODIS atmospheric profile retrieval algorithm theoretical basis document. Madison: Cooperative Institute for Meteorological Satellite Studies: 3-5
Seemann S W, Li J, Menzel W P and Gumley L E. 2003. Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances. Journal of Applied Meteorology, 42(8): 1072-1091 [DOI: 10.1175/1520-0450(2003)042<1072:OROATM>2.0.CO;2http://dx.doi.org/10.1175/1520-0450(2003)042<1072:OROATM>2.0.CO;2]
Sharan M and Aditi. 2009. Performance of various similarity functions for nondimensional wind and temperature profiles in the surface layer in stable conditions. Atmospheric Research, 94(2): 246-253 [DOI: 10.1016/j.atmosres.2009.05.014http://dx.doi.org/10.1016/j.atmosres.2009.05.014]
Sheese P E, Walker K A, Boone C D, Bernath P F, Froidevaux L, Funke B, Raspollini P and Von Clarmann T. 2017. ACE-FTS ozone, water vapour, nitrous oxide, nitric acid, and carbon monoxide profile comparisons with MIPAS and MLS. Journal of Quantitative Spectroscopy and Radiative Transfer, 186: 63-80 [DOI: 10.1016/j.jqsrt.2016.06.026http://dx.doi.org/10.1016/j.jqsrt.2016.06.026]
Shephard M W, Worden H M, Cady-Pereira K E, Lampel M, Luo M Z, Bowman K W, Sarkissian E, Beer R, Rider D M, Tobin D C, Revercomb H E, Fisher B M, Tremblay D, Clough S A, Osterman G B and Gunson M. 2008. Tropospheric emission spectrometer nadir spectral radiance comparisons. Journal of Geophysical Research: Atmospheres, 113(D15): D15S05 [DOI: 10.1029/2007JD008856http://dx.doi.org/10.1029/2007JD008856]
Shimoda H and Ogawa T. 2000. Interferometric monitor for greenhouse gases (IMG). Advances in Space Research, 25(5): 937-946 [DOI: 10.1016/S0273-1177(99)00926-6http://dx.doi.org/10.1016/S0273-1177(99)00926-6]
Sica R J, Izawa M R M, Walker K A, Boone C, Petelina S V, Argall P S, Bernath P, Burns G B, Catoire V, Collins R L, Daffer W H, De Clercq C, Fan Z Y, Firanski B J, French W J R, Gerard P, Gerding M, Granville J, Innis J L, Keckhut P, Kerzenmacher T, Klekociuk A R, Kyrö E, Lambert J C, Llewellyn E J, Manney G L, McDermid I S, Mizutani K, Murayama Y, Piccolo C, Raspollini P, Ridolfi M, Robert C, Steinbrecht W, Strawbridge K B, Strong K, Stübi R and Thurairajah B. 2008. Validation of the Atmospheric Chemistry Experiment (ACE) version 2.2 temperature using ground-based and space-borne measurements. Atmospheric Chemistry and Physics, 8(1): 35-62 [DOI: 10.5194/acp-8-35-2008http://dx.doi.org/10.5194/acp-8-35-2008]
Siméoni D, Astruc P, Miras D, Alis C, Andreis O, Scheidel D, Degrelle C, Nicol P, Bailly B, Guiard P, Clauss A, Blumstein D, Maciaszek T, Chalon G, Carlier T and Kayal G. 2004. Design and development of IASI instrument//Proceedings of SPIE 5543, Infrared Spaceborne Remote Sensing XII. Denver: SPIE: 208-219 [DOI: 10.1117/12.561090http://dx.doi.org/10.1117/12.561090]
Smith W L and Woolf H M. 1976. The use of eigenvectors of statistical covariance matrices for interpreting satellite sounding radiometer observations. Journal of the Atmospheric Sciences, 33(7): 1127-1140 [DOI: 10.1175/1520-0469(1976)033<1127:TUOEOS>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1976)033<1127:TUOEOS>2.0.CO;2]
Smith W L, Woolf H M and Schreiner A J. 1985. Simultaneous retrieval of surface atmospheric parameters: a physical and analytically direct approach. Advances in Remote Sensing, 7(7): 221-232
Smith W L. 1968. An improved method for calculating tropospheric temperature and moisture from satellite radiometer measurements. Monthly Weather Review, 96(6): 387-396 [DOI: 10.1175/1520-0493(1968)096<0387:AIMFCT>2.0.CO;2http://dx.doi.org/10.1175/1520-0493(1968)096<0387:AIMFCT>2.0.CO;2]
Sokolov A, Khomenko G and Dubuisson P. 2008. Sensitivity of atmospheric-surface parameters retrieval to the spectral stability of channels in thermal IR. Journal of Quantitative Spectroscopy and Radiative Transfer, 109(9): 1685-1692 [DOI: 10.1016/j.jqsrt.2007.11.001http://dx.doi.org/10.1016/j.jqsrt.2007.11.001]
Song C, Yin Q and Xie Y N. 2019. Development of channel selection methods for infrared atmospheric vertical sounding. Infrared, 40(6): 18-26
宋慈, 尹球, 谢亚楠. 2019. 红外大气垂直探测通道优选方法的发展. 红外, 40(6): 18-26 [DOI: 10.3969/j.issn.1672-8785.2019.06.004http://dx.doi.org/10.3969/j.issn.1672-8785.2019.06.004]
Etienne N. 2002. ACE-FTS instrument detailed design//Proceedings of SPIE 4814, Earth Observing Systems VII. Seattle: SPIE: 70-81 [DOI: 10.1117/12.451701http://dx.doi.org/10.1117/12.451701]
Strow L L, Hannon S E, De Souza-Machado S, Motteler H E and Tobin D. 2003a. An overview of the airs radiative transfer model. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 303-313 [DOI: 10.1109/TGRS.2002.808244http://dx.doi.org/10.1109/TGRS.2002.808244]
Strow L L, Hannon S E, Weiler M, Overoye K, Gaiser S L and Aumann H H. 2003b. Prelaunch spectral calibration of the atmospheric infrared sounder (AIRS). IEEE Transactions on Geoscience and Remote Sensing, 41(2): 274-286 [DOI: 10.1109/TGRS.2002.808245http://dx.doi.org/10.1109/TGRS.2002.808245]
Susskind J, Rosenfield J, Reuter D and Chahine M T. 1984. Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N. Journal of Geophysical Research: Atmosphere, 89(D3): 4677-4697 [DOI: 10.1029/JD089iD03p04677http://dx.doi.org/10.1029/JD089iD03p04677]
Tang S H, Qiu H and Ma G. 2016. Review on progress of the Fengyun meteorological satellite. Journal of Remote Sensing, 20(5): 842-849
唐世浩, 邱红, 马刚. 2016. 风云气象卫星主要技术进展. 遥感学报, 20(5): 842-849 [DOI: 10.11834/jrs.20166232http://dx.doi.org/10.11834/jrs.20166232]
Tian X M, Liu D, Xu J W, Wang Z Z, Wang B X, Wu D C, Zhong Q Z, Xie C B and Wang Y J. 2018. Review on atmospheric detection lidar network and spaceborne lidar technology. Journal of Atmospheric and Environmental Optics, 13(6): 401-416
田晓敏, 刘东, 徐继伟, 王珍珠, 王邦新, 吴德成, 钟志庆, 谢晨波, 王英俭. 2018. 大气探测激光雷达网络和星载激光雷达技术综述. 大气与环境光学学报, 13(6): 401-416 [DOI: 10.3969/j.issn.1673-6141.2018.06.001http://dx.doi.org/10.3969/j.issn.1673-6141.2018.06.001]
Walker K A, Randall C E, Trepte C R, Boone C D and Bernath P F. 2005. Initial validation comparisons for the atmospheric chemistry experiment (ACE-FTS). Geophysical Research Letters, 32(16): L16S04 [DOI: 10.1029/2005GL022388http://dx.doi.org/10.1029/2005GL022388]
Wang H M, Li X Y, Xu J, Zhang X Y, Ge S L, Chen L F, Wang Y P, Zhu S Y, Miao J and Si Y D. 2018. Assessment of retrieved N2O, NO2, and HF profiles from the atmospheric infrared ultraspectral sounder based on simulated spectra. Sensors, 18(7): 2209 [DOI: 10.3390/s18072209http://dx.doi.org/10.3390/s18072209]
Wang J, Sheng Z, Zhou B H and Zhou S D. 2014. Lightning potential forecast over Nanjing with denoised sounding-derived indices based on SSA and CS-BP neural network. Atmospheric Research, 137: 245-256 [DOI: 10.1016/j.atmosres.2013.10.014http://dx.doi.org/10.1016/j.atmosres.2013.10.014]
Wang Q M and Zhang Y M. 2006. Development of meteorological lidar. Meteorological Science and Technology, 34(3): 246-249
王青梅, 张以谟. 2006. 气象激光雷达的发展现状. 气象科技, 34(3): 246-249 [DOI: 10.3969/j.issn.1671-6345.2006.03.002http://dx.doi.org/10.3969/j.issn.1671-6345.2006.03.002]
Wang Y P, Li X Y, Chen L F, Zhang Y, Zou M M, Zhang H and Zhu S Y. 2016. Overview of infrared limb sounding. Journal of Remote Sensing, 20(4): 513-527
王雅鹏, 李小英, 陈良富, 张莹, 邹铭敏, 张晗, 朱松岩. 2016. 红外临边探测发展现状. 遥感学报, 20(4): 513-527 [DOI: 10.11834/jrs.20165302http://dx.doi.org/10.11834/jrs.20165302]
Wang Y P. 2017. Research on Temperature/Pressure and Ozone Retrieval Algorithm Based on Atmospheric Infrared Ultraspectral Spectrometer. Beijing: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences: 28-30
王雅鹏. 2017. 大气红外甚高分辨率掩星探测仪温压及臭氧廓线反演算法研究. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所): 28-30
Wang Z Y and Jiang G M. 2016. Inversion of IRAS/FY-3B atmospheric temperature and humidity profiles based on fast locally linear regression. Optics and Precision Engineering, 24(6): 1529-1539
王忠一, 蒋耿明. 2016. 基于快速局域线性回归的IRAS/FY-3B大气温湿廓线反演. 光学 精密工程, 24(6): 1529-1539 [DOI: 10.3788/OPE.20162406.1529http://dx.doi.org/10.3788/OPE.20162406.1529]
Weaver C J, Joiner J and Ginoux P. 2003. Mineral aerosol contamination of TIROS Operational Vertical Sounder (TOVS) temperature and moisture retrievals. Journal of Geophysical Research: Atmosphere, 108(D8): 4246 [DOI: 10.1029/2002JD002571http://dx.doi.org/10.1029/2002JD002571]
Worden J, Kulawik S S, Shephard M W, Clough S A, Worden H, Bowman K and Goldman A. 2004. Predicted errors of tropospheric emission spectrometer nadir retrievals from spectral window selection. Journal of Geophysical Research: Atmosphere, 109(D9): D09308 [DOI: 10.1029/2004JD004522http://dx.doi.org/10.1029/2004JD004522]
Wu X B, Li J, Zhang W J and Wang F. 2005. Atmospheric profile retrieval with AIRS data and validation at the ARM CART site. Advances in Atmospheric Sciences, 22(5): 647-654 [DOI: 10.1007/BF02918708http://dx.doi.org/10.1007/BF02918708]
Wu X, Yao Z G, Han Z G and Zhao Z L. 2016. Retrieval of stratospheric temperatures from radiance measurements by infrared atmospheric sounding interferometer. Infrared, 37(4): 11-17
吴晓, 姚志刚, 韩志刚, 赵增亮. 2016. 利用IASI资料反演平流层大气温度. 红外, 37(4): 11-17 [DOI: 10.3969/j.issn.1672-8785.2016.04.003http://dx.doi.org/10.3969/j.issn.1672-8785.2016.04.003]
Wulfmeyer V, Hardesty R M, Turner D D, Behrendt A, Cadeddu M P, Girolamo P D, Schlüssel P, Van Baelen J and Zus F. 2015. A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles. Reviews of Geophysics, 53(3): 819-895 [DOI: 10.1002/2014RG000476http://dx.doi.org/10.1002/2014RG000476]
Xiao C Y and Hu X. 2010. Applying artificial neural networks to modeling the middle atmosphere. Advances in Atmospheric Sciences, 27(4): 883-890 [DOI: 10.1007/s00376-009-9019-1http://dx.doi.org/10.1007/s00376-009-9019-1]
Xu P. 2005. Retrieval of Atmospheric Temperature and Humidity Profiles from NOAA/ATOVS and Data Assimilating Experiments in Meteorological Mesoscale Model. Qingdao: Ocean University of China: 1-4
徐萍. 2005. NOAA卫星ATOVS资料反演大气温、湿廓线及其在中尺度气象模式中的同化试验. 青岛: 中国海洋大学: 1-4
Yang J, Xian D and Tang S H. 2018. The latest development and application of Fengyun series meteorological satellites. Satellite Application, (11): 8-14
杨军, 咸迪, 唐世浩. 2018. 风云系列气象卫星最新进展及应用. 卫星应用, (11): 8-14
Yang Z D, Lu N M, Shi J M, Zhang P, Dong C H and Yang J. 2013. Overview of FY-3 payload and ground application system. Advances in Meteorological Science and Technology, 3(4): 6-12
杨忠东, 卢乃锰, 施进明, 张鹏, 董超华, 杨军. 2013. 风云三号卫星有效载荷与地面应用系统概述. 气象科技进展, 3(4): 6-12 [DOI: 10.3969/j.issn.2095-1973.2013.04.001http://dx.doi.org/10.3969/j.issn.2095-1973.2013.04.001]
Yin Q, He J M and Zhang H. 2009. Application of laser radar in monitoring meteorological and atmospheric environment. Journal of Meteorology and Environment, 25(5): 48-56
尹青, 何金海, 张华. 2009. 激光雷达在气象和大气环境监测中的应用. 气象与环境学报, 25(5): 48-56 [DOI: 10.3969/j.issn.1673-503X.2009.05.011http://dx.doi.org/10.3969/j.issn.1673-503X.2009.05.011]
Zhang J and Zhang Q. 2008. Aerosol impact and correction on temperature profile retrieval from MODIS. Geophysical Research Letters, 35(13): L13818 [DOI: 10.1029/2008GL034419http://dx.doi.org/10.1029/2008GL034419]
Zhang K, Wu C Q and Li J. 2016b. Retrieval of atmospheric temperature and moisture vertical profiles from satellite advanced infrared sounder radiances with a new regularization parameter selecting method. Journal of meteorological Research, 30(3): 356-370 [DOI: 10.1007/s13351-016-6025-yhttp://dx.doi.org/10.1007/s13351-016-6025-y]
Zhang K. 2016. New Methods in Retrieving Atmospheric Temperature and Moisture Profiles from Satellite Observations. Beijing: Chinese Academy of Meteorological Sciences: 1-6
张堃. 2016a. 卫星资料反演大气温湿度廓线的新方法研究. 北京: 中国气象科学研究院: 1-6
Zhang X H, Guan L, Wang Z H and Han J. 2009. Retrieving atmospheric temperature profiles using artificial neural network approach. Meteorological Monthly, 35(11): 137-142
张雪慧, 官莉, 王振会, 韩静. 2009. 利用人工神经网络方法反演大气温度廓线. 气象, 35(11): 137-142 [DOI: 10.7519/j.issn.1000-0526.2009.11.018http://dx.doi.org/10.7519/j.issn.1000-0526.2009.11.018]
Zhang X Y, Zhou M Q, Wang W H and Li X J. 2015. Progress of global satellite remote sensing of atmospheric compositions and its' applications. Science and Technology Review, 33(17): 13-22
张兴赢, 周敏强, 王维和, 李晓静. 2015. 全球卫星大气成分遥感探测应用进展及其展望. 科技导报, 33(17): 13-22 [DOI: 10.3981/j.issn.1000-7857.2015.17.001http://dx.doi.org/10.3981/j.issn.1000-7857.2015.17.001]
Zhao E H and Shen Z Z. 1996. The microwave radiometer for detecting atmospheric temperature profiles. Space Electronic Technology, (4): 21-25, 28
赵恩惠, 沈宗珍. 1996. 探测大气温度廓线的微波辐射计. 空间电子技术, (4): 21-25, 28
Zhao Q, Han L, Yang S Z, Yang P and Cui S C. 2016. Retrieval of atmospheric profile by hyperspectral infrared satellite data. Journal of Atmospheric and Environmental Optics, 11(2): 118-124
赵强, 韩露, 杨世植, 杨鹏, 崔生成. 2016. 利用超光谱红外卫星数据反演大气廓线研究. 大气与环境光学学报, 11(2): 118-124 [DOI: 10.3969/j.issn.1673-6141.2016.02.005http://dx.doi.org/10.3969/j.issn.1673-6141.2016.02.005]
Zhao Y X, Zhou D and Yan H L. 2018. An improved retrieval method of atmospheric parameter profiles based on the BP neural network. Atmospheric Research, 213: 389-397 [DOI: 10.1016/j.atmosres.2018.06.025http://dx.doi.org/10.1016/j.atmosres.2018.06.025]
Zhou A M. 2017. Atmospheric Temperature and Humidity Profiles Retrieval from Hyperspectral Infrared Simulation Data Based on FY-4. Nanjing: Nanjing University of Information Science and Technology: 1-10
周爱明. 2017. 基于风云四号高光谱红外模拟资料反演大气温湿廓线试验研究. 南京: 南京信息工程大学: 1-10
Zhou D K, Smith W L, Li J, Howell H B, Cantwell G W, Larar A M, Knuteson R O, Tobin D C, Revercomb H E and Mango S A. 2002. Thermodynamic product retrieval methodology and validation for NAST-I. Applied Optics, 41(33): 6957-6967 [DOI: 10.1364/AO.41.006957http://dx.doi.org/10.1364/AO.41.006957]
相关作者
相关机构