轻小型无人机测绘遥感系统研究进展
Review of the light-weighted and small UAV system for aerial photography and remote sensing
- 2021年25卷第3期 页码:708-724
纸质出版日期: 2021-03-07
DOI: 10.11834/jrs.20210052
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-03-07 ,
扫 描 看 全 文
张继贤,刘飞,王坚.2021.轻小型无人机测绘遥感系统研究进展.遥感学报,25(3): 708-724
Zhang J X,Liu F and Wang J. 2021. Review of the light-weighted and small UAV system for aerial photography and remote sensing. National Remote Sensing Bulletin, 25(3):708-724
地球空间信息是人工智能、大数据时代的重要数据基础,轻小型无人机测绘遥感技术作为中国当前和未来获取厘米级分辨率、实时响应遥感数据的主要手段,必将发挥更加重要的作用。本文首先介绍了固定翼、多旋翼、无人直升机以及飞行控制系统、地面监控系统和遥控遥测链路的发展现状和潜在发展趋势;其次重点研究了数码相机、视频摄像机、倾斜相机、激光雷达、合成孔径雷达和定姿定位系统的利用现状和发展趋势;然后总结分析了当前无人机测绘遥感面临的系统检测、大范围实时遥感和遥感大数据精准解译方面的问题和挑战;最后面向人工智能、大数据、物联网、云计算等技术背景给出了轻小型无人机测绘遥感技术在飞行控制智能化、测绘遥感作业智能化和实时、实景无人机遥感技术应用模式创新等方面的发展趋势。
Geospatial information is important in the era of artificial intelligence and big data. Small
lightweight unmanned aerial vehicles (UAVs) for aerial photogrammetry and Remote Sensing (RS) technology
as the main means of obtaining centimeter-scale resolution and real-time remote sensing data
may be expected to play an important role in these fields.
First
this paper focuses on the development status and trends of UAV aerial photogrammetry and RS systems. Fixed-wing
lightweight
and small UAVs are an early type of aircraft in the field of surveying and mapping. The hand-throwing and vertical take-off and landing characteristics of fixed-wing UAV systems have prompted the development of these technologies toward the intelligent direction. Multi-rotor UAVs are important instruments in remote sensing mapping
but their flight duration requires further improvement. Unmanned helicopters are widely used in the remote sensing mapping of heavy loads
but this technology is greatly affected by cost
control complexity
and other factors. Digital camera
video camera
tilt camera
lidar
SAR
POS
and other loads are highly useful in surveying and mapping; however
because the detection and calibration of new sensors and UAV systems has not been optimized
the development of new technologies and equipment is limited to a certain extent.
Next
the problems and challenges of system detection
large-scale real-time remote sensing
and accurate big data interpretation of UAV aerial photogrammetry and RS data are summarized and analyzed. UAV aerial photogrammetry and RS systems are widely used
but the detection methods and standards of UAV systems aimed at environmental adaptability
flight performance
navigation control accuracy
and electromagnetic compatibility have not been perfected. The real-time multi-level transmission technology of video
imagery
and other surveying and mapping data must be further developed for emergency rescue. The data obtained each year by UAV aerial photogrammetry and RS are more than PB and mostly used to produce standard surveying and mapping products. However
the data collected are insufficient for data mining and analysis.
Finally
facing the technical backgrounds of artificial intelligence
big data
Internet of things
and cloud computing
among others
future development directions of intelligent flight control
UAV operation
and real-time
real-scene UAV remote sensing technologies are provided. The continuous development and improvement of the industry and rapid promotion of market demands
aerial photogrammetry
and RS technology of lightweight and small UAVs may be expected to promote industrial changes in earth observation and accurate public perception
potentially forming a new industry worth over 100 billion US dollars.
轻小型无人机测绘遥感系统测绘遥感载荷人工智能大数据
light-weighted and small UAV for aerial photogrammetry and RSaerial photogrammetry and RS sensorsartificial Intelligencebig data
An J H. 2018. APP Development of Single Lens UAV Tilt Image Acquisition Route Planning. Beijing: China University of Geosciences (Beijing) (安江航. 2018. 单镜头无人机倾斜影像采集航线规划APP研发. 北京: 中国地质大学(北京)
Anders N, Masselink R, Keesstra S and Suomalainen J. 2013. High-res digital surface modeling using fixed-wing UAV-based photogrammetry//Proceedings of Geomorphometry. Nanjing, China: [s.
n.]: 16-20
Arnold T, de Biasio M, Fritz A, Frank A and Leitner R. 2012. UAV-based multi-spectral environmental monitoring. Sensors, 2010 IEEE, Waikoloa, HI, USA, 2010, pp. 995-998, doi: 10.1109/ICSENS.2010.5690923http://dx.doi.org/10.1109/ICSENS.2010.5690923.
Ben L L and Wang P. 2018. Analysis on the application of unmanned helicopter in the field of aeronautical surveying and mapping. Dual Use Technologies and Products, (21): 64-66
贲亮亮, 王鹏. 2018. 无人直升机在航空测绘领域应用浅析. 军民两用技术与产品, (21): 64-66 [DOI: 10.3969/j.issn.1009-8119.2018.21.016]
Bi K, Li Y C, Ding X B and Liu F. 2015. Aerial photogrammetric technology of light small UAV: status and trend of development. Bulletin of Surveying and Mapping, (3): 27-31, 48
毕凯, 李英成, 丁晓波, 刘飞. 2015. 轻小型无人机航摄技术现状及发展趋势. 测绘通报, (3): 27-31, 48 [DOI: 10.13474/j.cnki.11-2246.2015.0068http://dx.doi.org/10.13474/j.cnki.11-2246.2015.0068]
Bi K, Zhao J X, Ding X B and Liu F. 2017. Technical design and product quality inspection of oblique aerial photography. Bulletin of Surveying and Mapping, (4): 71-76
毕凯, 赵俊霞, 丁晓波, 刘飞. 2017. 倾斜航空摄影技术设计与成果质量检验. 测绘通报, (4): 71-76 [DOI: 10.13474/j.cnki.11-2246.2017.0123]
Chen S. 2006. Chinese Digital Camera Industry Market Structure and National Digital Camera Development Research. Fuzhou: Fuzhou University
陈述. 2006. 中国数码相机市场结构研究. 福州: 福州大学
Chen T E, Nagai M and Shibasaki R. 2012. An unmanned helicopter based mapping system with differential GPS and multi-Sensor. Science of Surveying and Mapping, 37(1): 158-160, 184
陈天恩, 长井正彦, 柴崎亮介. 2012. 带有差分GPS的多传感器无人直升机航测遥感系统. 测绘科学, 37(1): 158-160, 184 [DOI: 10.16251/j.cnki.1009-2307.2012.01.039http://dx.doi.org/10.16251/j.cnki.1009-2307.2012.01.039]
Chen X. 2018. Research on multi-objective route planning and task allocation algorithm for UAVs. Nanjing: Nanjing University
陈星. 2018. 无人机多目标的航线规划和任务分配算法研究. 南京: 南京大学
Cherkasov S, Farkhutdinov A, Rykovanov D P and Shaipov A A. 2018. The use of unmanned aerial vehicle for geothermal exploitation monitoring: khankala field example. Journal of Sustainable Development of Energy, Water and Environment Systems, 6(2): 351-362 [DOI: 10.13044/j.sdewes.d6.0196http://dx.doi.org/10.13044/j.sdewes.d6.0196]
Chiang K W, Tsai M L and Chu C H. 2012. The development of an UAV borne direct georeferenced photogrammetric platform for ground control point free applications. Sensors, 12(7): 9161-9180 [DOI: 10.3390/s120709161http://dx.doi.org/10.3390/s120709161]
Colomina I and Molina P. 2014. Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS Journal of Photogrammetry and Remote Sensing, 92: 79-97 [DOI: 10.1016/j.isprsjprs.2014.02.013http://dx.doi.org/10.1016/j.isprsjprs.2014.02.013]
Cress J J, Hutt M E, Sloan J L, Bauer M A, Feller M R and Goplen S E. 2015. U.S. Geological survey Unmanned Aircraft Systems (UAS) Roadmap 2014. Reston, VA, U.S. Geological Survey
Cui H X, Sun J, Lin Z J and Chu M H. 2005. Research on calibration of the non-measurement camera. Science of Surveying and Mapping, 30(1): 105-107
崔红霞, 孙杰, 林宗坚, 储美华. 2005. 非量测数码相机的畸变差检测研究. 测绘科学, 30(1): 105-107
Ding M, Tang L, Zhou L L, Wang X M, Weng Z L and Qu J M. 2019. W band mini-SAR on multi rotor UAV platform//Proceedings of the 2019 IEEE 2nd International Conference on Electronic Information and Communication Technology. Harbin, China: IEEE: 416-418 [DOI: 10.1109/ICEICT.2019.8846356http://dx.doi.org/10.1109/ICEICT.2019.8846356]
Dong X Y, Li J G, Chen H Y, Zhao L, Zhang L M and Xing S H. 2019. Extraction of individual tree information based on remote sensing images from an Unmanned Aerial Vehicle. Journal of Remote Sensing, 23(6): 1269-1280
董新宇, 李家国, 陈瀚阅, 赵磊, 张黎明, 邢世和. 2019. 无人机遥感影像林地单株立木信息提取. 遥感学报, 23(6): 1269-1280 [DOI: 10.11834/jrs.20198073http://dx.doi.org/10.11834/jrs.20198073]
Editorial Board of the Documentary of Western China Mapping Project. 2012. The Documentary of Western China Mapping Project. Beijing: China Society Press (《西部测图工程纪实》编委会. 2012. 西部测图工程纪实. 北京: 中国社会出版社)
Edrich M and Weiss G. 2008. Second-generation Ka-band UAV SAR system//Proceedings of the 2008 38th European Microwave Conference. Amsterdam, Netherlands: IEEE: 1636-1639 [DOI: 10.1109/EUMC.2008.4751786http://dx.doi.org/10.1109/EUMC.2008.4751786]
Essen H, Johannes W, Stanko S, Sommer R, Wahlen A and Wilcke J. 2012. High resolution W-band UAV SAR//Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium. Munich, Germany: IEEE: 5033-5036 [DOI: 10.1109/IGARSS.2012.6352480http://dx.doi.org/10.1109/IGARSS.2012.6352480]
Eugster H and Nebiker S. 2008. UAV-based augmented monitoring-real-time georeferencing and integration of video imagery with virtual globes. IAPRSSIS, 2008, 37(B1): 1229-1235
Frey O, Werner C L and Coscione R. 2019. Car-borne and UAV-borne mobile mapping of surface displacements with a compact repeat-pass interferometric SAR system at L-band//Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan: IEEE: 274-277 [DOI: 10.1109/IGARSS.2019.8897827http://dx.doi.org/10.1109/IGARSS.2019.8897827]
Frost and Sullivan. 2007. Study analysing the current activities in the field of UAV. ENTR/2007/065. 2007. Available online: https://ec.europa.eu/home-affairs/sites/homeaffairs/files/e-library/documents/policies/security/pdf/uav_study_element_2_en.pdf (accessed on 18 January 2021)https://ec.europa.eu/home-affairs/sites/homeaffairs/files/e-library/documents/policies/security/pdf/uav_study_element_2_en.pdf(accessedon18January2021).
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of China. 2012. GB/T 27919-2011 Specifications for IMU/GPS supported aerial photography. Beijing: Standards Press of China
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2012. GB/T 27919-2011 IMU/GPS辅助航空摄影技术规范. 北京: 中国标准出版社
Gonzalo P. 2015. Overview and current status of remote sensing applications based on Unmanned Aerial Vehicles (UAVs). Photogrammetric Engineering and Remote Sensing, 81(4): 281-330
Grenzdörffer G, Niemeyer F and Schmidt F. 2012. Development of four vision camera system for a micro-UAV//Proceedings of XXII ISPRS Congress. Melbourne, Australia: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences: 369-374 [DOI: 10.5194/isprsarchives-XXXIX-B1-369-2012http://dx.doi.org/10.5194/isprsarchives-XXXIX-B1-369-2012]
Guo D H, Wang J C and Zheng X W. 2009. Theory and Practice of Direct Geographic Positioning Technology in Airborne POS System. Beijing: Geological Publishing House
郭大海, 王建超, 郑雄伟. 2009. 机载POS系统直接地理定位技术理论与实践. 北京: 地质出版社
Guo D H, Wu L X, Wang J C and Zheng X W. 2004. A preliminary discussion on direct georeferencing of integrated GPS/IMU. Remote Sensing for Land and Resources, 16(2): 26-31
郭大海, 吴立新, 王建超, 郑雄伟. 2004. 机载POS系统对地定位方法初探. 国土资源遥感, 16(2): 26-31 [DOI: 10.3969/j.issn.1001-070X.2004.02.006http://dx.doi.org/10.3969/j.issn.1001-070X.2004.02.006]
Guo H D. 2000. Radar for Earth Observation. Beijing: Science Press
郭华东. 2000. 雷达对地观测理论与应用. 北京: 科学出版社
Gupta S G, Ghonge M and Jawandhiya P M. 2013. Review of unmanned aircraft system (UAS). International Journal of Advanced Research in Computer Engineering and Technology, 2(4): 1646-1658 [DOI: 10.2139/ssrn.3451039http://dx.doi.org/10.2139/ssrn.3451039]
Han H Z and Wang J. 2017. Robust GPS/BDS/INS tightly coupled integration with atmospheric constraints for long-range kinematic positioning. GPS Solutions, 21(3): 1285-1299 [DOI: 10.1007/s10291-017-0612-yhttp://dx.doi.org/10.1007/s10291-017-0612-y]
Han H Z, Wang J, Wang J L and Tan X L. 2015. Performance analysis on carrier phase-based tightly-coupled GPS/BDS/INS integration in GNSS degraded and denied environments. Sensors, 15(4): 8685-8711 [DOI: 10.3390/s150408685http://dx.doi.org/10.3390/s150408685]
Hawkins B P and Tung W. 2019. UAVSAR real-time embedded GPU processor//Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan: IEEE: 545-547 [DOI: 10.1109/IGARSS.2019.8900055http://dx.doi.org/10.1109/IGARSS.2019.8900055]
Hk W. 2017. AV500 completes the demonstration of “Aviation Emergency Mapping system for Unmanned helicopter”. Dual Use Technologies and Products, (7): 18
Hk W. 2017. AV500完成“无人直升机航空应急测绘系统”演示. 军民两用技术与产品, (7): 18[DOI: 10.19385/j.cnki.1009-8119.2017.07.024]
Jayathunga S, Owari T and Tsuyuki S. 2018. Evaluating the performance of photogrammetric products using fixed-wing UAV imagery over a mixed conifer–broadleaf forest: comparison with airborne laser scanning. Remote Sensing, 10(2): 187 [DOI: 10.3390/rs10020187http://dx.doi.org/10.3390/rs10020187]
Jiang Y Z, Liu Y, Han Z H and Yang J. 1992. The development and present situation of foreign small format aerial remote sensing. Surveying and Mapping of Sichuan, (3): 106-110
姜跃祖, 刘勇, 韩振华, 杨健. 1992. 国外小像幅航空遥感的发展及其现状. 四川测绘, (3): 106-110
Li D R. 2013. New mission for surveying, mapping and geomatics in smart earth Era. China Surveying and Mapping, (1): 6-7 (李德仁. 2013. 智慧地球时代测绘地理信息学的新使命. 中国测绘, (1): 32-33)
Li D R. 2016. Towards geo-spatial information science in big data era. Acta Geodaetica et Cartographica Sinica, 45(4): 379-384
李德仁. 2016. 展望大数据时代的地球空间信息学. 测绘学报, 45(4): 379-384 [DOI: 10.11947/j.AGCS.2016.20160057http://dx.doi.org/10.11947/j.AGCS.2016.20160057]
Li D R and Li M. 2014. Research advance and application prospect of unmanned aerial vehicle remote sensing system. Geomatics and Information Science of Wuhan University, 39(5): 505-513, 540
李德仁, 李明. 2014. 无人机遥感系统的研究进展与应用前景. 武汉大学学报(信息科学版), 39(5): 505-513, 540 [DOI: 10.13203/j.whugis20140045http://dx.doi.org/10.13203/j.whugis20140045]
Li H Q. 2009. Accuracy Researche of Close-Range Photogrammetry Base on Non-Metric Digital Camera. Jiaozuo: Henan Polytechnic University
李海启. 2009. 非量测型数码相机近景摄影测量的精度研究. 焦作: 河南理工大学
Li S W, Chen T F, Li L and Li X L. 2019. System design of tethered coaxial twin-rotor uav based on APM flight control technology. Electronics World, (11): 166-167
李松炜, 陈天福, 李丽, 李贤丽. 2019. 基于APM飞控技术系留式共轴双旋翼无人机系统设计. 电子世界, (11): 166-167 [DOI: 10.19353/j.cnki.dzsj.2019.11.077]
Li X Y. 2005. IMU/DGPS-supported Photogrammetry Theory, Approaches and Practice. Zhengzhou: Institute of Surveying and Mapping, Information Engineering University
李学友. 2005. IMU/DGPS辅助航空摄影测量原理、方法及实践. 郑州: 解放军信息工程大学
Li Y. 2011. Research on Resources Allocation and Formation Trajectories Optimization for Multiple UAVs Cooperation Mission. Changsha: National University of Defense Technology
李远. 2011. 多UAV协同任务资源分配与编队轨迹优化方法研究. 长沙: 国防科技大学
Li Y C, Liu F, Ding X B, Liu P, Luo X Y and Ren Y F. 2015. Method and device for determining exposure time of aerial photogrammetric camera in light-small unmanned aerial vehicle. CN, CN201510178178.
X (李英成, 刘飞, 丁晓波, 刘沛, 罗祥勇, 任亚锋. 2015. 测定轻小型无人机中航测相机曝光时刻的方法及装置. 中国, CN201510178178.X)
Li Y C, Liu F, Ding X B, Yang J J, Ren Y F and Liu P. 2017. Multi-view stereo aerial photographic device for unmanned aerial vehicles and method for determining focal length of multi-view stereo aerial photographic device. CN, CN201510178317.9
李英成, 刘飞, 丁晓波, 杨江江,任亚锋, 刘沛. 2017. 无人机用多视角立体航摄装置及其焦距确定的方法. 中国, CN201510178317.9
Li Y C, Wang F, Liu P, Sun X B and Liu F. 2018. Method and device for fusing video data and geographic position information. CN, CN201610055522.0
李英成, 王凤, 刘沛, 孙新博, 刘飞. 2018. 一种视频数据和地理位置信息的融合方法和装置. 中国, CN201610055522.0
Li Y C, Ye D M, Xue Y L and Li T H. 2012. Application of GPS supported aerial triangulation technology in UAV island topographic mapping. Science of Surveying and Mapping, 37(5): 55-57
李英成, 叶冬梅, 薛艳丽, 李团好. 2012. GPS辅助空中三角测量技术在无人机海岛测图中的应用. 测绘科学, 37(5): 55-57 [DOI: 10.16251/j.cnki.1009-2307.2012.05.037http://dx.doi.org/10.16251/j.cnki.1009-2307.2012.05.037]
Liang F L. 2013. Research on Enhanced Imaging Techniques of Low-altitude UAV-Mounted UWB SAR. Changsha: National University of Defense Technology
梁福来. 2013. 低空无人机载UWB SAR增强成像技术研究. 长沙: 国防科学技术大学
Liao X H and Zhou C G. 2016. Development Report on Remote Sensing of Light and Small UAV. Beijing: Science Press
廖小罕, 周成虎. 2016. 轻小型无人机遥感发展报告. 北京: 科学出版社
Liu L and Ji B. 2014. Status and development of radar on UAV. Modern Navigation, 5(3): 227-231
刘亮, 吉波. 2014. 无人机载雷达现状及发展趋势. 现代导航, 5(3): 227-231
Liu R K and Zhang X L. 2000. High speed data downlink of airborne SAR in the pilotless aircraft. Journal of Telemetry, Tracking, and Command, 21(3): 19-23
刘荣科, 张晓林. 2000. 无人机机载合成孔径雷达的高速数据传输. 遥测遥控, 21(3): 19-23 [DOI: 10.3969/j.issn.2095-1000.2000.03.005http://dx.doi.org/10.3969/j.issn.2095-1000.2000.03.005]
Liu Y S, Qin X, Guo W Q, Gao S R, Chen J Z, Wang L H, Li Y Z and Jin Z Z. 2020. Influence of the use of photogrammetric measurement precision on low-altitude micro-UAVs in the glacier region. Journal of Remote Sensing, 24(2): 161-172
刘宇硕, 秦翔, 郭万钦, 高思如, 陈记祖, 王利辉, 李延召, 晋子振. 2020. 控制点布设对冰川区无人机摄影测量精度的影响. 遥感学报, 24(2): 161-172 [DOI: 10.11834/jrs.20208263http://dx.doi.org/10.11834/jrs.20208263]
López J, Dormido R, Dormido S and Gómez J P. 2015. A robust H∞ controller for an UAV flight control system. The Scientific World Journal, 2015: 403236 [DOI: 10.1155/2015/403236http://dx.doi.org/10.1155/2015/403236]
Luo X. 2019. Research on Route Planning of UAV Power Inspection Based on Fish Swarm Algorithm. Nanchang: Nanchang University
罗旋. 2019. 基于鱼群算法无人机电力巡检航线规划研究. 南昌: 南昌大学
Merz T and Chapman S. 2011. Autonomous unmanned helicopter system for remote sensing missions in unknown environments//Proceedings of ISPRS Zurich 2011 Workshop. Zurich, Switzerland: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences: 143-148 [DOI: 10.5194/isprsarchives-XXXVIII-1-C22-143-2011http://dx.doi.org/10.5194/isprsarchives-XXXVIII-1-C22-143-2011]
Mian O, Lutes J, Lipa G, Hutton J J, Gavelle E and Borghini S. 2016. Accuracy assessment of direct georeferencing for photogrammetric applications on small unmanned aerial platforms//Proceedings of European Calibration and Orientation Workshop. Lausanne, Switzerland: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences: 77-83 [DOI: 10.5194/isprs-archives-XL-3-W4-77-2016http://dx.doi.org/10.5194/isprs-archives-XL-3-W4-77-2016]
Niethammer U, James M R, Rothmund S, Travelletti J and Joswig M. 2012. UAV-based remote sensing of the Super-Sauze landslide: evaluation and results. Engineering Geology, 128: 2-11 [DOI: 10.1016/j.enggeo.2011.03.012http://dx.doi.org/10.1016/j.enggeo.2011.03.012]
Pastor E, Lopez J and Royo P. 2007. UAV payload and mission control hardware/software architecture. IEEE Aerospace and Electronic Systems Magazine, 22(6): 3-8 [DOI: 10.1109/MAES.2007.384074http://dx.doi.org/10.1109/MAES.2007.384074]
Peng Z B. 2018. Design and Implementation of UAV Real-time HD Image Transmission System. Xi’an: Xidian University
彭湛博. 2018. 无人机实时高清图传系统的设计与实现. 西安: 西安电子科技大学
Remondino F, Barazzetti L, Nex F, Scaioni M and Sarazzi D. 2011. UAV photogrammetry for mapping and 3D modeling–current status and future perspectives//Proceedings of ISPRS Zurich 2011 Workshop. Zurich, Switzerland: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences: 25-31 [DOI: 10.5194/isprsarchives-XXXVIII-1-C22-25-2011http://dx.doi.org/10.5194/isprsarchives-XXXVIII-1-C22-25-2011]
Remy M A, de Macedo K A C and Moreira J R. 2012. The first UAV-based P- and X-band interferometric SAR system//Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium. Munich, Germany: IEEE: 5041-5044 [DOI: 10.1109/IGARSS.2012.6352478http://dx.doi.org/10.1109/IGARSS.2012.6352478]
Ren C F. 2014. Research on Key Technologies of DOM Generation by Aerial Video. Wuhan: Wuhan University
任超锋. 2014. 航空视频影像的正射影像制作关键技术研究. 武汉: 武汉大学
Routescene. 2019. Technical specification for your turnkey UAV LiDAR solution[EB/OL].https://www.routescene.com/wp-content/uploads/2019/01/routescene_leaflets_technical_2019_USfinal.pdf (accessed on 18 January 2021https://www.routescene.com/wp-content/uploads/2019/01/routescene_leaflets_technical_2019_USfinal.pdf(accessedon18January2021)
Sancı S and İşler V. 2011. A parallel algorithm for UAV flight route planning on GPU. International Journal of Parallel Programming, 39(6): 809-837 [DOI: 10.1007/s10766-011-0171-8http://dx.doi.org/10.1007/s10766-011-0171-8]
Saur G and Krüger W. 2016. Change detection in uav video mosaics combining a feature based approach and extended image differencing//Proceedings of XXIII ISPRS Congress. Prague, Czech Republic: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences: 557-562 [DOI: 10.5194/isprs-archives-XLI-B7-557-2016http://dx.doi.org/10.5194/isprs-archives-XLI-B7-557-2016]
School of Geodesy and Geomatics of Wuhan University. 2019. UAV lidar can measure shallow water depth[EB/OL]. [2019-11-26].http://main.sgg.whu.edu.cn/keyan/xingyedongtai/2019/1126/4367.html (http://main.sgg.whu.edu.cn/keyan/xingyedongtai/2019/1126/4367.html(
武汉大学测绘学院. 2019. 无人机激光雷达可以测量浅水深度[EB/OL]. [2019-11-26].http://main.sgg.whu.edu.cn/keyan/xingyedongtai/2019/1126/4367.html(accessed on 18 January 2021)http://main.sgg.whu.edu.cn/keyan/xingyedongtai/2019/1126/4367.html(accessedon18January2021)
Shan Y. 2018. Research on Autonomous Landing Control of Quadrotor UAV Based on Vision-guiding. Nanjing: Nanjing University of Aeronautics and Astronautics
单一. 2018. 基于视觉导航的四旋翼无人机自主着降控制研究. 南京: 南京航空航天大学
State Bureau of Surveying and Mapping. 2010a. CH/Z 3003-2010
Specifications for ofiice of low-altitude digital aerophotogrammetry. Beijing: Surveying and Mapping Press 国家测绘局. 2010. CH/Z 3003-2010
低空数字航空摄影测量内业规范. 北京: 测绘出版社)
State Bureau of Surveying and Mapping. 2010. CH/Z 3004-2010
Specifications for field work of low-altitude digital aerophotogrammetry. Beijing: Surveying and Mapping Press 国家测绘局. 2010b. CH/Z 3004-2010
低空数字航空摄影测量外业规范. 北京: 测绘出版社)
Sujit P B, Hudzietz B P and Saripalli S. 2013. Route planning for angle constrained terrain mapping using an unmanned aerial vehicle. Journal of Intelligent and Robotic Systems, 69(1/4): 273-283 [DOI: 10.1007/s10846-012-9729-yhttp://dx.doi.org/10.1007/s10846-012-9729-y]
Sun X B, Li Y C, Wang F, Liu F, Wang S X and Zhou G W. 2018. Design and implementation of UAV geographic information video system. Science of Surveying and Mapping, 43(10): 131-136, 156
孙新博, 李英成, 王凤, 刘飞, 王田雪, 周高伟. 2018. 无人机地理信息视频系统的设计与实现. 测绘科学, 43(10): 131-136, 156 [DOI: 10.16251/j.cnki.1009-2307.2018.10.021http://dx.doi.org/10.16251/j.cnki.1009-2307.2018.10.021]
Tian Y, Zou C H, Zhou Z W and Zhou X D. 2016. Development and application of multi-rotor UAV (part two). Model Airplane, (2): 84-87
田宇, 邹春海, 周正伟, 周晓东. 2016. 多旋翼无人机的发展及应用(下). 航空模型, (2): 84-87
Wallace L, Lucieer A, Watson C and Turner D. 2012. Development of a UAV-LiDAR system with application to forest inventory. Remote Sensing, 4(6): 1519-1543 [DOI: 10.3390/rs4061519http://dx.doi.org/10.3390/rs4061519]
Wan Y L, Zhang L L, Lu S Z, Xu J and Chen P T. 2018. Design of obstacle avoidance flight system based on PX4 flight control UAV. Practical Electronics, (13): 31-33
万宇楼, 张琳琳, 路淑贞, 徐佳, 陈娉婷. 2018. 基于PX4飞控无人机的避障飞行系统设计. 电子制作, (13): 31-33 [DOI: 10.16589/j.cnki.cn11-3571/tn.2018.13.013]
Wang H and Xu G H. 2003. Research status and Development trend of unmanned helicopter. Helicopter Technique, (2): 45-49
王海, 徐国华. 2003. 无人驾驶直升机的研究现状和发展趋势. 直升机技术, (2): 45-49 [DOI: 10.3969/j.issn.1673-1220.2003.02.011
Watts A C, Ambrosia V G and Hinkley E A. 2012. Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use. Remote Sensing, 4(6): 1671-1692 [DOI: 10.3390/rs4061671http://dx.doi.org/10.3390/rs4061671]
Whitehead K, hugenholtz C H, Myshak S, Brown O, LeClair A, Tamminga A, Barchyn T E, Moorman B and Eaton B. 2014. Remote sensing of the environment with small unmanned aircraft systems (UASs), Part 2: scientific and commercial applications. Journal of Unmanned Vehicle Systems, 2(3): 86-102 [DOI: 10.1139/juvs-2014-0007http://dx.doi.org/10.1139/juvs-2014-0007]
Xue L. 2016. Design and Implementation of Flight Control System of Unmanned Multi-Rotor Aircraft. Nanjing: Nanjing University of Aeronautics and Astronautics
薛亮. 2016. 多旋翼无人机飞行控制系统设计与实现. 南京: 南京航空航天大学
Xue W. 2014. The Calibration of UAV Video Geo-Information and Live Processing Technology. Zhengzhou: PLA Information Engineering University
薛武. 2014. 无人机视频地理信息定标与直播处理技术. 郑州: 解放军信息工程大学
Xue W, Zhang Y S, Wang T, Yu Y and Cao B C. 2019. High precision positioning of unmanned helicopter with area array images. Geomatics and Information Science of Wuhan University, 44(2): 246-253
薛武, 张永生, 王涛, 于英, 曹彬才. 2019. 无人直升机面阵影像高精度对地定位. 武汉大学学报(信息科学版), 444(2): 246-253 [DOI: 10.13203/j.whugis20170075http://dx.doi.org/10.13203/j.whugis20170075]
Yamazaki F and Wen L. 2016. Remote sensing technologies for post-earthquake damage assessment: a case study on the 2016 kumamoto earthquake//Proceedings of 6th ASIA Conference on Earthquake Engineering. Cebu City, Philippines: 1-13
Yan L, Liao X H, Zhou C H, Fan B K, Gong J Y, Cui P, Zheng Y Q and Tan X. 2019. The impact of UAV remote sensing technology on the industrial development of China: a review. Journal of Geo-information Science, 21(4): 475-495
晏磊, 廖小罕, 周成虎, 樊邦奎, 龚健雅, 崔鹏, 郑玉权, 谭翔. 2019. 中国无人机遥感技术突破与产业发展综述. 地球信息科学学报, 21(4): 475-495 [DOI: 10.12082/dqxxkx.2019.180589http://dx.doi.org/10.12082/dqxxkx.2019.180589]
Yang B S and Li J P. 2018. Implementation of a low-cost mini-UAV laser scanning system. Geomatics and Information Science of Wuhan University, 43(12): 1972-1978
杨必胜, 李健平. 2018. 轻小型低成本无人机激光扫描系统研制与实践. 武汉大学学报(信息科学版), 43(12): 1972-1978 [DOI: 10.13203/j.whugis2018 0265http://dx.doi.org/10.13203/j.whugis20180265]
Yang M L, Li D C, Wan Z Q, Yan D and Wang Y K. 2019. Current status and application prospect analysis of VTOL-UAVs for remote sensing applications in China. Journal of Geo-information Science, 21(4): 496-503
杨梦琳, 李道春, 万志强, 严德, 王耀坤. 2019. 中国面向遥感应用的垂直起降无人机现状和应用前景分析. 地球信息科学学报, 21(4): 496-503 [DOI: 10.12082/dqxxkx.2019.180422http://dx.doi.org/10.12082/dqxxkx.2019.180422]
Yang R J. 2015. Research of Hybrid Redundancy Flight Control Computer Kernel of UAV Based on X86 and PowerPC. Nanjing: Nanjing University of Aeronautics and Astronautics
杨蕊姣. 2015. 基于PowerPC和x86的混合余度无人机飞控计算机内核技术研究. 南京: 南京航空航天大学
Yang Y X, Li J L, Wang A B, Xu J Y, He H B, Guo H R, Shen J F and Dai X. 2014. Preliminary assessment of the navigation and positioning performance of BeiDou regional navigation satellite system. Science China Earth Sciences, 57(1): 144-152 [DOI: 10.1007/s11430-013-4769-0http://dx.doi.org/10.1007/s11430-013-4769-0]
Yang Y X, Xu Y Y, Li J L and Yang C. 2018. Progress and performance evaluation of BeiDou global navigation satellite system: data analysis based on BDS-3 demonstration system. Science China Earth Sciences, 61(5): 614-624 [DOI: 10.1007/s11430-017-9186-9http://dx.doi.org/10.1007/s11430-017-9186-9]
Yao H, Qin R J and Chen X Y. 2019. Unmanned aerial vehicle for remote sensing applications—A review. Remote Sensing, 11(12): 1443 [DOI: 10.3390/rs11121443http://dx.doi.org/10.3390/rs11121443]
Yi J B, Li X H and Sun H L. 1994. The investigation of technical requirements for small format aerial photograghy. Geomatics and Information Science of Wuhan University, 19(2): 113-117
宣家斌, 李相华, 孙和利. 1994. 小像幅航空摄影中若干技术要求的研究. 武汉测绘科技大学学报, 19(2):113-117
Yuan X X. 2001. Principle and Application of GPS-aided aerial Triangulation. Beijing: Surveying and Mapping Press
袁修孝. 2001. GPS辅助空中三角测量原理及应用. 北京: 测绘出版社
Yuan X X. 2008. POS-supported bundle block adjustment. Acta Geodaetica et Cartographica Sinica, 37(3): 342-348
袁修孝. 2008. POS辅助光束法区域网平差. 测绘学报, 37(3): 342-348 [DOI: 10.3321/j.issn:1001-1595.2008.03.013http://dx.doi.org/10.3321/j.issn:1001-1595.2008.03.013]
Yuan X X, Fu J H, Zuo Z L and Sun H X. 2006. Accuracy analysis of direct georeferencing by airborne position and orientation system in aerial photogrammetry. Geomatics and Information Science of Wuhan University, 31(10): 847-850
袁修孝, 傅建红, 左正立, 孙红星. 2006. 机载POS系统用于航空遥感直接对地目标定位的精度分析. 武汉大学学报(信息科学版), 31(10): 847-850 [DOI: 10.3969/j.issn.1671-8860.2006.10.001http://dx.doi.org/10.3969/j.issn.1671-8860.2006.10.001]
Zhang J X, Lin X G and Liang X L. 2017. Advances and prospects of information extraction from point clouds. Acta Geodaetica et Cartographica Sinica, 46(10): 1460-1469
张继贤, 林祥国, 梁欣廉. 2017. 点云信息提取研究进展和展望. 测绘学报, 46(10): 1460-1469 [DOI: 10.11947/j.AGCS.2017.20170345http://dx.doi.org/10.11947/j.AGCS.2017.20170345]
Zhang J X, Yan Q and Zhang L. 2013. Principle and Methodology of Western China Topographic Mapping. Beijing: Surveying and Mapping Press
张继贤, 燕琴, 张力. 2013. 西部地形困难区域测图的原理与方法. 北京: 测绘出版社
Zhang X X, Wang S T, Li Y C, Liu F, Ding X B and Ren Y F. 2019. Accuracy analysis of aerial small UAV flight control attitude data. Science of Surveying and Mapping, 44(5): 102-109
张欣欣, 王双亭, 李英成, 刘飞, 丁晓波, 任亚锋. 2019. 轻小型无人机飞控测姿数据辅助测图精度分析. 测绘科学, 44(5): 102-109 [DOI: 10.16251/j.cnki.1009-2307.2019.05.016http://dx.doi.org/10.16251/j.cnki.1009-2307.2019.05.016]
Zhang Z. 2000. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11): 1330-1334 [DOI: 10.1109/34.888718http://dx.doi.org/10.1109/34.888718]
Zhao J L and Wang S. 2017. Comparative analysis of 3D modeling based on dual cameras and five camerasoblique photograph. Bulletin of Surveying and Mapping, (S1): 18-21, 29
赵家乐, 王森. 2017. 基于双相机和五相机倾斜摄影方法的三维建模对比分析研究. 测绘通报, (S1): 18-21, 29 [DOI: 10.13474/j.cnki.11-2246.2017.0606http://dx.doi.org/10.13474/j.cnki.11-2246.2017.0606]
Zhou G Q. 2009. Near real-time orthorectification and mosaic of small UAV video flow for time-critical event response. IEEE Transactions on Geoscience and Remote Sensing, 47(3): 739-747 [DOI: 10.1109/TGRS.2008.2006505http://dx.doi.org/10.1109/TGRS.2008.2006505]
Zhu X K. 2018. Research on Key Technologies and Applications of 1: 500
Large-scale UAV Mapping. Wuhan: Wuhan University 朱晓康. 2018. 1:500
无人机大比例尺测图关键技术及应用研究. 武汉: 武汉大学)
Zulu A and John S. 2014. A review of control algorithms for autonomous quadrotors. Open Journal of Applied Sciences, 4(14): 547-556 [DOI: 10.4236/ojapps.2014.414053http://dx.doi.org/10.4236/ojapps.2014.414053]
相关作者
相关机构