SAR与光学遥感影像的玉米秸秆覆盖度估算
Estimation of maize residue cover on the basis of SAR and optical remote sensing image
- 2021年25卷第6期 页码:1308-1323
纸质出版日期: 2021-06-07
DOI: 10.11834/jrs.20210053
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-06-07 ,
扫 描 看 全 文
刘之榆,刘忠,万炜,黄晋宇,王佳莹,郑曼迪.2021.SAR与光学遥感影像的玉米秸秆覆盖度估算.遥感学报,25(6): 1308-1323
Liu Z Y,Liu Z,Wan W,Huang J Y,Wang J Y and Zheng M D. 2021. Estimation of maize residue cover on the basis of SAR and optical remote sensing image. National Remote Sensing Bulletin, 25(6):1308-1323
秸秆是农田生态系统的重要组成部分。秸秆覆盖度(CRC)的遥感估算可以大范围、快速地获取地面秸秆覆盖信息,对保护性耕作的推广具有十分重要的意义。基于Sentinel-1 SAR影像和Sentinel-2光学影像分别构建了雷达指数与光学遥感指数,结合吉林省梨树县春秋两期实地采样数据,探究遥感指数与玉米秸秆覆盖度的相关性。为进一步提升玉米秸秆覆盖度的估算精度,结合雷达指数与光学遥感指数,采用最优子集回归的方法建立玉米秸秆覆盖度的估算模型,完成研究区的玉米秸秆覆盖度估算制图。结果表明:土壤质地分区建模可有效解决土壤异质性问题,提升反演精度。各遥感指数在秋季高覆盖时期的表现均优于春季低覆盖时期。STI和NDTI指数在光学遥感指数中表现最好,
R
2
分别为0.701和0.697,而在雷达指数中,基于余弦矫正法的
<math id="M1"><msubsup><mrow><mi>γ</mi></mrow><mrow><mi mathvariant="normal">V</mi><mi mathvariant="normal">H</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msubsup></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20195530&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20195528&type=
4.48733330
4.06400013
指数与实测CRC的相关性最高,
R
2
为0.564。结合雷达指数与光学遥感指数能够有效地提高秸秆覆盖度估算精度,在最优子集回归法下基于结合指数构建的回归模型最优,
R
2
为0.799,RMSE为13.67%,达到了较高的精度。研究结果为秸秆覆盖度估算的精度提升提供了一种新思路。
Crop residue is the remaining stems
leaves
and fruit pods in the field after crop harvest. Crop residue plays an important role in the farmland ecosystem. Remote sensing technology has advantages in time and space
and it has become the main method to estimate Crop Residue Cover (CRC). Using remote sensing technology to estimate CRC can obtain information about ground CRC quickly in a large scale
which is of great significance to the promotion of conservation tillage. On the basis of a Sentinel-1 SAR image and a Sentinel-2 optical image
radar index and optical remote sensing index were constructed
respectively. The autumn and spring field sample data in 2018 and 2019 in Lishu County
Jilin Province were combined. The correlation of the remote sensing index and the maize residue cover was explored
and the method of soil texture zoning modeling was adopted to reduce the influence of surface background factors on the estimation of CRC. To further improve the estimation accuracy of maize residue cover
the radar index and optical remote sensing index were combined. Moreover
the optimal subset regression and soil texture zoning were used to establish the maize residue cover estimation model
and the estimation mapping of maize residue cover in the study area was then completed. Results show that: soil texture zoning modeling can effectively solve the problem of soil heterogeneity
thus improving the accuracy of inversion. The performance of each remote sensing index in autumn high coverage period in 2018 is better than that in spring low coverage period in 2019. The STI and NDTI index have strong stability and the best performance in optical remote sensing index.
R
2
is 0.701 and 0.697
respectively; whereas in the radar index
the correlation between
<math id="M2"><msubsup><mrow><mi>γ</mi></mrow><mrow><mi mathvariant="normal">V</mi><mi mathvariant="normal">H</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msubsup></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20195534&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20195532&type=
4.91066647
4.74133301
based on cosine correction method and CRC measured is the highest
and
R
2
is 0.564. The combination of radar index and optical remote sensing index can effectively improve the accuracy of CRC estimation. The regression model based on the combined index has the best performance with the method of optimal subset regression and soil texture zoning. The
R
2
of the model is 0.799
and the
RMSE
is 13.67%
which show high accuracy. Therefore
the proposed method improves the accuracy of CRC estimation.
微波遥感秸秆覆盖度玉米SAR最优子集回归
microwave remote sensingstrawcoveragemaizeSARoptimal subset regression
Aase J K and Tanaka D L. 1991. Reflectances from four wheat residue cover densities as influenced by three soil backgrounds. Agronomy Journal, 83(4): 753-757 [DOI: 10.2134/agronj1991.000219620http://dx.doi.org/10.2134/agronj1991.00021962008300040020x]
Biard F, Bannari A and Bonn F. 1995. SACRI (Soil Adjusted Corn Residue Index): un indice utilisant le proche et le moyen infrarouge pour la détection de résidus de culture de maïs//Proceedings of the 17ème Symposium Canadien Sur La Télédétection. Saskatoon: 413-419
Blanco-Canqui H and Lal R. 2007. Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till. Soil and Tillage Research, 95(1/2): 240-254 [DOI: 10.1016/j.still.2007.01.004http://dx.doi.org/10.1016/j.still.2007.01.004]
Brisco B, Brown R J, Snider B, Sofko G J, Koehler J A and Wacker A G. 1991. Tillage effects on the radar backscattering coefficient of grain stubble fields. International Journal of Remote Sensing, 12(11): 2283-2298 [DOI: 10.1080/01431169108955258http://dx.doi.org/10.1080/01431169108955258]
Cai W T, Zhao S H, Wang Y M, Peng F C, Heo J and Duan Z. 2019. Estimation of winter wheat residue coverage using optical and SAR remote sensing images. Remote Sensing, 11(10): 1163 [DOI: 10.3390/rs11101163http://dx.doi.org/10.3390/rs11101163]
Cai W T, Zhao S H, Zhang Z H, Peng F C and Xu J J. 2018. Comparison of different crop residue indices for estimating crop residue cover using field observation data//Proceedings of the 7th International Conference on Agro-Geoinformatics. Hangzhou: IEEE: 1-4 [DOI: 10.1109/Agro-Geoinformatics.2018.8476112http://dx.doi.org/10.1109/Agro-Geoinformatics.2018.8476112]
Causarano H J, Doraiswamy P C, McCarty G W, Hatfield J L, Milak S and Stern A J. 2008. EPIC modeling of soil organic carbon sequestration in croplands of Iowa. Journal of Environmental Quality, 37(4): 1345-1353 [DOI: 10.2134/jeq2007.0277http://dx.doi.org/10.2134/jeq2007.0277]
CTIC. 2016. Tillage Type Definitions. West Lafayette: Conservation Technology Information Center
Daughtry C S T. 2001. Discriminating crop residues from soil by shortwave infrared reflectance. Agronomy Journal, 93(1): 125-131 [DOI: 10.2134/agronj2001.931125xhttp://dx.doi.org/10.2134/agronj2001.931125x]
Daughtry C S T, Graham M W, Stern A J, Quemada M, Hively W D and Russ A L. 2018. Landsat-8 and worldview-3 data for assessing crop residue cover//Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia: IEEE [DOI: 10.1109/IGARSS.2018.8519473http://dx.doi.org/10.1109/IGARSS.2018.8519473]
Daughtry C S T, Hunt E R, Doraiswamy III P C and McMurtrey J E. 2005. Remote sensing the spatial distribution of crop residues. Agronomy Journal, 97(3): 864-871 [DOI: 10.2134/agronj2003.0291http://dx.doi.org/10.2134/agronj2003.0291]
Daughtry C S T, Hunt E R and McMurtrey III J E. 2004. Assessing crop residue cover using shortwave infrared reflectance. Remote Sensing of Environment, 90(1): 126-134 [DOI: 10.1016/j.rse.2003.10.023http://dx.doi.org/10.1016/j.rse.2003.10.023]
Daughtry C S T, Serbin G, Reeves III J B, Doraiswamy P C and Hunt E R. 2010. Spectral reflectance of wheat residue during decomposition and remotely sensed estimates of residue cover. Remote Sensing, 2(2): 416-431 [DOI: 10.3390/rs2020416http://dx.doi.org/10.3390/rs2020416]
Gelder B K, Kaleita A L and Cruse R M. 2009. Estimating mean field residue cover on Midwestern soils using satellite imagery. Agronomy Journal, 101(3): 635-643 [DOI: 10.2134/agronj2007.0249http://dx.doi.org/10.2134/agronj2007.0249]
He M M, Guo Q, Li A, Chen J, Chen B and Feng X X. 2018. Automatic fast feature-level image registration for high-resolution remote sensing images. Journal of Remote Sensing, 22(2): 277-292
何梦梦, 郭擎, 李安, 陈俊, 陈勃, 冯旭祥. 2018. 特征级高分辨率遥感图像快速自动配准. 遥感学报, 22(2): 277-292 [DOI: 10.11834/jrs.20186420http://dx.doi.org/10.11834/jrs.20186420]
Huang J Y, Liu Z, Wan W, Liu Z Y, Wang J Y and Wang S. 2020. Remote sensing retrieval of maize residue cover on soil heterogeneous background. Chinese Journal of Applied Ecology, 31(2): 474-482
黄晋宇, 刘忠, 万炜, 刘之榆, 王佳莹, 王思. 2020. 基于土壤异质背景的玉米秸秆覆盖度遥感反演. 应用生态学报, 31(2): 474-482 [DOI: 10.13287/j.1001-9332.202002.012http://dx.doi.org/10.13287/j.1001-9332.202002.012]
Jacinthe P A and Lal R. 2009. Tillage effects on carbon sequestration and microbial biomass in reclaimed farmland soils of southwestern Indiana. Soil Science Society of America Journal, 73(2): 605-613 [DOI: 10.2136/sssaj2008.0156http://dx.doi.org/10.2136/sssaj2008.0156]
Jin X L, Ma J H, Wen Z D and Song K S. 2015. Estimation of maize residue cover using Landsat-8 OLI image spectral information and textural features. Remote Sensing, 7(11): 14559-14575 [DOI: 10.3390/rs71114559http://dx.doi.org/10.3390/rs71114559]
Kong Q L, Li L, Xu K H and Zhu D H. 2017. Monitoring crop residue area in northeast of China based on Sentinel-1A data. Transactions of the Chinese Society for Agricultural Machinery, 48(S1): 284-289
孔庆玲, 李俐, 徐凯华, 朱德海. 2017. 基于Sentinel-1A的东北地区作物留茬区监测研究. 农业机械学报, 48(S1): 284-289
Lal R, Kimble J M, Follett R F and Cole C V. 1999. The Potential of U.S. Cropland to Sequester Carbon and Mitigate the Greenhouse Effect. Boca Raton: Lewis Publishers: 128
Lei B Y. 2015. Estimation of Winter Wheat Residue Biomass Based on Full Polarimetric Radar Data. Nanjing: Nanjing University
雷步云. 2015. 基于全极化雷达数据的冬小麦作物残茬生物量估算研究. 南京: 南京大学
Li M Z, Yu X T, Gao Y K and Fan W Y. 2018. Remote sensing quantification on forest biomass based on SAR polarization decomposition and Landsat data. Journal of Beijing Forestry University, 40(2): 1-10
李明泽, 于欣彤, 高元科, 范文义. 2018. 基于SAR极化分解与Landsat数据的森林生物量遥感估测. 北京林业大学学报, 40(2): 1-10 [DOI: 10.13332/j.1000-1522.20170284http://dx.doi.org/10.13332/j.1000-1522.20170284]
Li Z T. 2016. Elimination of the Impact of Soil on the Estimation of Residue Cover by Remote Sensing Based on External Parameter Orthogonization. Beijing: University of Chinese Academy of Sciences
李志婷. 2016. 基于外部参数正交化法的秸秆覆盖度遥感估算中土壤影响校正研究. 北京: 中国科学院大学
Li Z T, Wang C K, Pan X Z, Liu Y, Li Y L and Shi R J. 2016. Estimation of wheat residue cover using simulated Landsat-8 OLI datas. Transactions of the Chinese Society of Agricultural Engineering, 32(S1): 145-152
李志婷, 王昌昆, 潘贤章, 刘娅, 李燕丽, 石荣杰. 2016. 基于模拟Landsat-8 OLI数据的小麦秸秆覆盖度估算. 农业工程学报, 32(S1): 145-152 [DOI: 10.11975/j.issn.1002-6819.2016.z1.021http://dx.doi.org/10.11975/j.issn.1002-6819.2016.z1.021]
McNairn H, Boisvert J B, Major D J, Gwyn Q H J, Brown R J and Smith A M. 1996. Identification of agricultural tillage practices from C-band radar backscatter. Canadian Journal of Remote Sensing, 22(2): 154-162 [DOI: 10.1080/07038992.1996.10874649http://dx.doi.org/10.1080/07038992.1996.10874649]
McNairn H, Duguay C, Boisvert J, Huffman E and Brisco B. 2001. Defining the sensitivity of multi-frequency and multi-polarized radar backscatter to post-harvest crop residue. Canadian Journal of Remote Sensing, 27(3): 247-263 [DOI: 10.1080/07038992.2001.10854941http://dx.doi.org/10.1080/07038992.2001.10854941]
McNairn H, Duguay C, Brisco B and Pultz T J. 2002. The effect of soil and crop residue characteristics on polarimetric radar response. Remote Sensing of Environment, 80(2): 308-320 [DOI: 10.1016/S0034-4257(01)00312-1http://dx.doi.org/10.1016/S0034-4257(01)00312-1]
McNairn H and Protz R. 1993. Mapping corn residue cover on agricultural fields in Oxford County, Ontario, using thematic mapper. Canadian Journal of Remote Sensing, 19(2): 152-159 [DOI: 10.1080/07038992.1993.10874543http://dx.doi.org/10.1080/07038992.1993.10874543]
McNairn H, Wood D, Gwyn Q H J, Brown R J and Charbonneau F. 1998. Mapping tillage and crop residue management practices with RADARSAT. Canadian Journal of Remote Sensing, 24(1): 28-35 [DOI: 10.1080/07038992.1998.10874688http://dx.doi.org/10.1080/07038992.1998.10874688]
Nagler P L, Daughtry C S T and Goward S N. 2000. Plant litter and soil reflectance. Remote Sensing of Environment, 71(2): 207-215 [DOI: 10.1016/s0034-4257(99)00082-6http://dx.doi.org/10.1016/s0034-4257(99)00082-6]
Nagler P L, Inoue Y, Glenn E P, Russ A L and Daughtry C S T. 2003. Cellulose absorption index (CAI) to quantify mixed soil-plant litter scenes. Remote Sensing of Environment, 87(2/3): 310-325 [DOI: 10.1016/j.rse.2003.06.001http://dx.doi.org/10.1016/j.rse.2003.06.001]
Narayanan R M, Mielke L N and Dalton J P. 1992. Crop residue cover estimation using radar techniques. Applied Engineering in Agriculture, 8(6): 863-869 [DOI: 10.13031/2013.26125http://dx.doi.org/10.13031/2013.26125]
Qi J G, Marsett R, Heilman P, Bieden-Bender S, Moran S, Goodrich D and Weltz M. 2002. RANGES improves satellite‐based information and land cover assessments in southwest United States. EOS, Transactions American Geophysical Union, 83(51): 601-606 [DOI: 10.1029/2002EO000411http://dx.doi.org/10.1029/2002EO000411]
Rundquist D and Streck N A. 2002. Estimating residual wheat dry matter from remote sensing measurements. Photogrammetric Engineering and Remote Sensing, 68(11): 1193-1202
Serbin G, Hunt E R, Daughtry C S T, McCarty G W and Doraiswamy P C. 2009. An improved ASTER index for remote sensing of crop residue. Remote Sensing, 1(4): 971-991 [DOI: 10.3390/rs1040971http://dx.doi.org/10.3390/rs1040971]
Sharma A R, Kharol S K, Badarinath K V S and Singh D. 2010. Impact of agriculture crop residue burning on atmospheric aerosol loading-a study over Punjab State, India. Annales Geophysicae, 28(2): 367-379 [DOI: 10.5194/angeo-28-367-2010http://dx.doi.org/10.5194/angeo-28-367-2010]
Smith A M and Major D J. 1996. Radar backscatter and crop residues. Canadian Journal of Remote Sensing, 22(3): 243-247 [DOI: 10.1080/07038992.1996.10855179http://dx.doi.org/10.1080/07038992.1996.10855179]
Ulaby F T and Dobson M C. 1989. Handbook of Radar Scattering Statistics for Terrain. Norwood: Artech House
van Deventer A P, Ward A D, Gowda P H and Lyon J G. 1997. Using thematic mapper data to identify contrasting soil plains and tillage practices. Photogrammetric Engineering and Remote Sensing, 63(1): 87-93
Verhulst N, Nelissen V, Jespers N, Haven H, Sayre K D, Raes D, Deckers J and Govaerts B. 2011. Soil water content, maize yield and its stability as affected by tillage and crop residue management in rainfed semi-arid highlands. Plant and Soil, 344(1/2): 73-85 [DOI: 10.1007/s11104-011-0728-8http://dx.doi.org/10.1007/s11104-011-0728-8]
Wang C K. 2013. Estimation Crop Residue Cover by Remote Sensing and Correction of Moisture Effects on Estimates. Beijing: University of Chinese Academy of Sciences
王昌昆. 2013. 秸秆覆盖度遥感估算及其水分影响校正研究. 北京: 中国科学院大学
Wilhelm W W, Johnson J M F, Hatfield J L, Voorhees W B and Linden D R. 2004. Crop and soil productivity response to corn residue removal: a literature review. Agronomy Journal, 96(1): 1-17 [DOI: 10.2134/agronj2004.1000ahttp://dx.doi.org/10.2134/agronj2004.1000a]
Wollenhaupt N C and Pingry J. 1991. Estimating Residue using the Line-Transect Method. Madison: University of Wisconsin
Yuan C Z, Zhou C T and Wang D T. 2018. Application of SENTINEL-1 TOOLBOX software in InSAR data processing. Journal of Geomatics, 43(3): 108-111
袁长征, 周成涛, 王大涛. 2018. SENTINEL-1 TOOLBOX软件在InSAR数据处理中的应用. 测绘地理信息, 43(3): 108-111 [DOI: 10.14188/j.2095-6045.2016297http://dx.doi.org/10.14188/j.2095-6045.2016297]
Zhang M, Li Q Z, Meng J H and Wu B F. 2011. Review of crop residue fractional cover monitoring with remote sensing. Spectroscopy and Spectral Analysis, 31(12): 3200-3205
张淼, 李强子, 蒙继华, 吴炳方. 2011. 作物残茬覆盖度遥感监测研究进展. 光谱学与光谱分析, 31(12): 3200-3205) [DOI: 10.3964/j.issn.1000-0593(201112-3200-0]
Zhang M, Meng J H, Dong T F, Wu B F and Sun H J. 2012. Spectral responses analysis of soybean residues. Journal of Remote Sensing, 16(6): 1115-1129
张淼, 蒙继华, 董泰锋, 吴炳方, 孙洪江. 2012. 大豆残茬光谱响应特征研究. 遥感学报, 16(6): 1115-1129 [DOI: 10.11834/jrs.20121305http://dx.doi.org/10.11834/jrs.20121305]
Zhang Y F, Li H W, He J, Wang Q J, Li W Y, Cheng W Z and Zhang X Y. 2015. Effects of maize straw mulching on runoff and sediment process of slope. Transactions of the Chinese Society of Agricultural Engineering, 31(7): 118-124
张翼夫, 李洪文, 何进, 王庆杰, 李问盈, 陈婉芝, 张欣悦. 2015. 玉米秸秆覆盖对坡面产流产沙过程的影响. 农业工程学报, 31(7): 118-124 [DOI: 10.3969/j.issn.1002-6819.2015.07.017http://dx.doi.org/10.3969/j.issn.1002-6819.2015.07.017]
Zheng B J, Campbell J B and de Beurs K M. 2012. Remote sensing of crop residue cover using multi-temporal Landsat imagery. Remote Sensing of Environment, 117: 177-183 [DOI: 10.1016/j.rse.2011.09.016http://dx.doi.org/10.1016/j.rse.2011.09.016]
相关作者
相关机构