基于多磁信标的指纹匹配定位算法
Accurate navigation and positioning method based on magnetic beacon
- 2022年26卷第10期 页码:2073-2082
纸质出版日期: 2022-10-07
DOI: 10.11834/jrs.20210056
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-10-07 ,
扫 描 看 全 文
郑元勋,李清华,王常虹,黄远,钟佳朋.2022.基于多磁信标的指纹匹配定位算法.遥感学报,26(10): 2073-2082
Zheng Y X,Li Q H,Wang C C,Huang Y and Zhong J P. 2022. Accurate navigation and positioning method based on magnetic beacon. National Remote Sensing Bulletin, 26(10):2073-2082
针对室内、地下以及障碍物较多的复杂环境中,可用导航源匮乏问题,本文提出一种利用低频时变磁场实现目标高精度位置与姿态解算的解决方案。传统时变磁场定位方法要求磁信标坐标系与目标坐标系一致且无法解算目标相对姿态角信息,同时精度普遍较差。本文提出的方案在解决传统方案的局限性基础上,又提出一种基于指纹匹配的改进方案,具有穿透性好、鲁棒性强且精度高的特点。首先根据空间中测量磁场计算磁信标接收信号强度RSSI(Received Signal Strength Indicator)拟合直线,根据指纹匹配原理估计目标位置;再根据测量磁场方向矢量模型,反演解算目标姿态角信息,实现目标位置与姿态信息解算过程,研究并分析了磁信标导航系统误差来源及解决方案;最后通过对比实验,验证本文提出的算法在实验条件下,位置估计误差期望为0.069 m,姿态角估计误差期望为2.3°,且误差不随时间积累,相对于传统的磁信标导航方案具有明显优势,具有较高的工程应用价值。
To solve the problem of lacking a reliable positioning source in complex environments such as indoor and underground
a high-precision position and attitude estimation method based on the low-frequency time-varying magnetic field is proposed in this paper. The traditional time-varying magnetic field positioning method requires the magnetic beacon coordinate system to be consistent with the target
which cannot solve the relative attitude angle information of the target and the accuracy is poor. The proposed method realized with the fingerprint matching algorithm overcomes the shortcoming of traditional solutions
which is penetrating
robust
and accurate.
According to the Biot–Savart Law
the magnetic field intensity decays with the distance between the target and the magnetic source
and the orientation of the measured magnetic field has a certain relation to orientation from the source to the target. Hence
according to this principle
an improved fingerprint algorithm is introduced. Firstly
the RSSI fitting line of the magnetic beacon is calculated according to the measured magnetic field in space
and the position is estimated by the fingerprint matching algorithm. The attitude can be achieved from the estimated position and magnetic field direction vector model. Furthermore
the disturbing factors of the magnetic beacon positioning system are analyzed and the optimization method is approached to improve system performance.
The performance includes the effective distance of a single magnetic beacon
the positioning accuracy
the stability of the proposed approach
and the influence of the magnetic beacon number are verified by the experiment. The effective distance of a single magnetic beacon is 14 m. The result exhibits the positioning error expectation is 0.069 m and attitude error expectation is 2.3°
respectively. The error does not accumulate over time
which has obvious advantages over the traditional magnetic beacon navigation solutions and has high engineering application value.
位姿解算磁信标模型地下与室内导航指纹匹配算法
position and attitude estimationmodel of magnetic beaconunderground and indoor navigationfingerprint matching algorithm
Blankenbach J, Norrdine A and Hellmers H. 2012. A robust and precise 3D indoor positioning system for harsh environments//Proceedings of 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN). Sydney: IEEE: 1-8 [DOI: 10.1109/IPIN.2012.6418863http://dx.doi.org/10.1109/IPIN.2012.6418863]
De Angelis G, Pasku V, De Angelis A, Dionigi M, Mongiardo M, Moschitta A and Carbone P. 2015. An indoor ac magnetic positioning system. IEEE Transactions on Instrumentation and Measurement, 64(5): 1267-1275 [DOI: 10.1109/TIM.2014.2381353http://dx.doi.org/10.1109/TIM.2014.2381353]
Dionigi M, De Angelis G, Moschitta A, Mongiardo M and Carbone P. 2014. A simple ranging system based on mutually coupled resonating circuits. IEEE Transactions on Instrumentation and Measurement, 63(5): 1215-1223 [DOI: 10.1109/TIM.2014.2298174http://dx.doi.org/10.1109/TIM.2014.2298174]
Hllmers H, Kasmi Z, Norrdine A and Eichhorn A. 2018. Accurate 3D positioning for a mobile platform in non-line-of-sight scenarios based on IMU/magnetometer sensor fusion. Sensors, 18(1): 126 [DOI: 10.3390/s18010126http://dx.doi.org/10.3390/s18010126]
Jiang H, Zhou, Y and Yang, Y. 2016. Research on magnetic measurement method of permanent magnet based on equivalent magnetic moment. Electronics World, (13): 90-91
姜浩, 周鹰, 杨云. 2016. 基于等效磁矩的永磁体磁性测量方法研究. 电子世界, (13): 90-91 [DOI: 10.3969/j.issn.1003-0522.2016.13.070http://dx.doi.org/10.3969/j.issn.1003-0522.2016.13.070]
Kumar N, Verma V and Behera L. 2017. Magnetic navigation and tracking of multiple ferromagnetic microrobots inside an arterial phantom setup for MRI guided drug therapy. Biocybernetics and Biomedical Engineering, 37(3): 347-356 [DOI: 10.1016/j.bbe.2017.04.002http://dx.doi.org/10.1016/j.bbe.2017.04.002]
Li Y, Zhuang Y, Zhang P, Lan H Y, Niu X J and El-Sheimy N. 2017. An improved inertial/wifi/magnetic fusion structure for indoor navigation. Information Fusion, 34: 101-119 [DOI: 10.1016/j.inffus.2016.06.004http://dx.doi.org/10.1016/j.inffus.2016.06.004]
Nelson J B. 1988. Calculation of the magnetic gradient tensor from total field gradient measurements and its application to geophysical interpretation. Geophysics, 53(7): 957-966 [DOI: 10.1190/1.1442532http://dx.doi.org/10.1190/1.1442532]
Norrdine A, Kasmi Z and Blankenbach J. 2016. A novel method for overcoming the impact of spatially varying ambient magnetic fields on a DC magnetic field-based tracking system. Journal of Location Based Services, 10(1): 3-15 [DOI: 10.1080/17489725.2016.1170898http://dx.doi.org/10.1080/17489725.2016.1170898]
Pasku V, De Angelis A, De Angelis G, D. Arumugam D, Dionigi M, Carbone P, Moschitta A, S.Ricketts D. 2017. Magnetic Field-Based Positioning Systems. IEEE Communications Surveys & Tutorials, 19(3): 2003-2017 [Doi: 10.1109/COMST.2017.2684087http://dx.doi.org/10.1109/COMST.2017.2684087]
Popek K M, Mahoney A W and Abbott J J. 2013. Localization method for a magnetic capsule endoscope propelled by a rotating magnetic dipole field//Proceedings of 2013 IEEE International Conference on Robotics and Automation. Karlsruhe: IEEE: 5348-5353 [DOI: 10.1109/ICRA.2013.6631343http://dx.doi.org/10.1109/ICRA.2013.6631343]
Son H and Lee K M. 2008. Distributed multipole models for design and control of PM actuators and sensors. IEEE/ASME Transactions on Mechatronics, 13(2): 228-238 [DOI: 10.1109/TMECH.2008.918544http://dx.doi.org/10.1109/TMECH.2008.918544]
Chen Y J, Zhou Z J, Li Q H, Xie Y G, Zhang Y B. 2021. Research on Multi-sensor Positioning Technology Based on Phase Difference of Magnetic Field Vector. Aeronautical Science & Technology, 32(10):74-79 [DOI: 10.19452/j.issn1007-5453.2021.10.012http://dx.doi.org/10.19452/j.issn1007-5453.2021.10.012.]
Lee K H, Baek M K, Park I H. 2012. Estimation of deep defect in ferromagnetic material by low frequency eddy current method. IEEE transactions on magnetics, 48(11): 3965-3968. [DOI: 10.1109/TMAG.2012.2202643http://dx.doi.org/10.1109/TMAG.2012.2202643]
Tang P, Huang Z Q and Lei J. 2017. Fingerprint localization using WLAN RSS and magnetic field with landmark detection//Proceedings of the 3rd International Conference on Computational Intelligence and Communication Technology. Ghaziabad: IEEE: 1-6 [DOI: 10.1109/CIACT.2017.7977316http://dx.doi.org/10.1109/CIACT.2017.7977316]
Wu F L, Liang Y, Fu Y and Ji X C. 2016. A robust indoor positioning system based on encoded magnetic field and low-cost IMU//Proceedings of 2016 IEEE/ION Position, Location and Navigation Symposium. Savannah: IEEE: 204-212 [DOI: 10.1109/PLANS.2016.7479703http://dx.doi.org/10.1109/PLANS.2016.7479703]
Xie Y G, Li Q H, Xie W N and Li X N. 2019. Solenoid magnetic field modeling based on dual magnetic dipoles. Journal of Chinese Inertial Technology, 27(5): 625-630
谢阳光, 李清华, 解伟男, 李新年. 2019. 基于双磁偶极子的螺线管磁场建模分析. 中国惯性技术学报, 27(5): 625-630 [DOI: 10.13695/j.cnki.12-1222/o3.2019.05.010http://dx.doi.org/10.13695/j.cnki.12-1222/o3.2019.05.010]
Zhang Z Y, Xiao C H, Gao J J and Zhou G H. 2010. Experiment research of magnetic dipole model applicability for a magnetic object. Journal of Basic Science and Engineering, 18(5): 862-868
张朝阳, 肖昌汉, 高俊吉, 周国华. 2010. 磁性物体磁偶极子模型适用性的试验研究. 应用基础与工程科学学报, 18(5): 862-868 [DOI: 10.3969/j.issn.1005-0930.2010.05.016http://dx.doi.org/10.3969/j.issn.1005-0930.2010.05.016]
Zheng Y, Li Q, Wang C, Li X and Huang Y. 2020. Magnetic-based positioning system for moving target with feature vector. IEEE Access, 8: 105472-105483 [DOI: 10.1109/ACCESS.2020.3000305http://dx.doi.org/10.1109/ACCESS.2020.3000305]
Zheng Y X, Li Q H, Wang C H, Yu W Z and Sun Q. 2020. High-precision calibration method for position and attitude angle of magnetic beacon. Journal of Chinese Inertial Technology, 28(3): 353-359
郑元勋, 李清华, 王常虹, 于文昭, 孙强. 2020. 高精度磁信标中心位置与姿态角标定方法. 中国惯性技术学报, 28(3): 353-359 [DOI: 10.13695/j.cnki.12-1222/o3.2020.03.011http://dx.doi.org/10.13695/j.cnki.12-1222/o3.2020.03.011]
Zong Y B, Zhang J, Shi X F and Sun F. 2011. A high-precision guidance method of wellbore trajectory based on the rotary magnetic dipole. Acta Petrolei Sinica, 32(2): 335-339
宗艳波, 张军, 史晓锋, 孙峰. 2011. 基于旋转磁偶极子的钻井轨迹高精度导向定位方法. 石油学报, 32(2): 335-339
Zong Y B, Zheng J H and Sun M G. 2016. Survey method for scanning angle between wells based on rotating magnetic field. China Measurement and Test, 42(12): 18-21
宗艳波, 郑俊华, 孙明光. 2016. 基于旋转磁场的井间扫描角测量方法. 中国测试, 42(12): 18-21 [DOI: 10.11857/j.issn.1674-5124.2016.12.004http://dx.doi.org/10.11857/j.issn.1674-5124.2016.12.004]
相关文章
相关作者
相关机构