海洋一号卫星水色水温扫描仪红外信息获取
Infrared information acquisition technology of Chinese ocean color and temperature scanner of HY-1 satellite
- 2022年26卷第8期 页码:1589-1601
纸质出版日期: 2022-08-07
DOI: 10.11834/jrs.20210071
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-08-07 ,
扫 描 看 全 文
范文龙,黄小仙,傅雨田.2022.海洋一号卫星水色水温扫描仪红外信息获取.遥感学报,26(8): 1589-1601
Fan W L,Huang X X and Fu Y T. 2022. Infrared information acquisition technology of Chinese ocean color and temperature scanner of HY-1 satellite. National Remote Sensing Bulletin, 26(8):1589-1601
对海温分布与变化的探测是海洋一号卫星主载荷水色水温扫描仪(简称水色仪,COCTS)的主要任务之一。考虑到对海冰和海洋上空台风等气象要素的同时探测,实际水温探测通道的动态范围要求涵盖200—320 K的温度区间。由于某些洋面区域微弱温度的变化将会导致严重天气灾害的发生,因此海温探测通道还需满足探测灵敏度与定量化的精度要求。本文旨在依据技术指标要求,设计水色仪红外通道的信息获取电路,包括对探测器微弱信号进行放大的前置放大电路,消除基础电平以提高动态范围的交流放大器,以及实现信号的直流恢复与动态范围调整的通道放大电路。基于对所使用的光导型红外探测器工作机理的研究,结合水色仪的系统组成与特性,为确保同时满足高动态范围与高灵敏度这一对相互矛盾的指标要求,通过理论分析计算、电路仿真等方法,确定各级放大电路的形式及参数。在真空环境模拟实验室对水色仪的系统性能进行测定,以验证信息获取电路设计的合理性。在实验室进行的红外辐射定标结果表明和在轨测试结果均表明,水色仪两个红外通道的动态范围和噪声等效温差(
<math id="M1"><mi mathvariant="normal">N</mi><mi mathvariant="normal">E</mi><mi mathvariant="normal">T</mi><mi mathvariant="normal">D</mi></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=35276510&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=35276505&type=
7.95866632
2.28600001
)均能较好的满足技术指标要求。红外通道能够实时跟踪星上黑体信号随时间与周围环境的变化,可据此来对红外通道的定标系数进行即时修正,从而达到预期的在轨实时辐射定标的目的,为定量化反演海温奠定了基础,并能获取且制作出高质量的全球海温产品。
Since 2000
China has launched four sun-synchronous ocean optical remote sensing satellites
namely
HY-1A
HY-1B
HY-1C
and HY-1D. The detection of Sea Surface Temperature (SST) distribution and variation is one of the main tasks of Chinese Ocean Color and Temperature Scanner (COCTS)
which is the main load of HY-1 satellite. The dynamic range of the actual water temperature detection channel is required to cover the temperature range of 200 K to 320 K
considering the detection of sea ice
typhoon
and other meteorological elements over the ocean. The variation of temperature in some ocean areas leads to severe weather disasters. Thus
SST detection channels should satisfy the requirements of detection sensitivity and quantification accuracy.
This study aims to design an information acquisition circuit of infrared channel for COCTS according to the technical requirements
including a pre-amplifier circuit to amplify the weak signal of the detector
AC amplifier
which eliminates the basic level to improve the dynamic range
and the channel amplifier circuit
which can realize the DC recovery and dynamic range adjustment of the signal.
Based on the study of the working mechanism of the photoconductive infrared detector used
and combined with the system composition and the characteristics of COCTS
the form and parameters of each stage amplifier circuit were determined thru theoretical analysis
calculation
and simulation to ensure that the contradictory requirements of high dynamic range and high sensitivity are met at the same time. The corresponding high-pass and low-pass filter are designed to achieve stable reference level detection and single pixel signal detection of the whole field of view. The system performance of COCTS is measured in the vacuum environment simulation laboratory to verify the reasonability of information acquisition circuit design.
Results of the infrared radiometric calibration in the laboratory show that the dynamic range of the two infrared channels covers 177 to 327 K and 173 to 324 K; they satisfy the technical requirements of 200 to 320 K. The Noise Equivalent Temperature Difference (NETD) of the two infrared channels in the whole dynamic range is between 20 and 110 mK. At the appraisal position of 300 K
NETD has reached 21 to 34 mK
which is much better than the technical requirements of 0.2 mK. The space test environment is more complex than the laboratory
and the measuring accuracy has some differences. The results of in orbit test show that the dynamic range of the two infrared channels is 186 to 328 K and 185 to 326 K
and the NETD in the whole dynamic range is between 50 mK and 110 mK
according to the window size of the selected target area. The performance is better than the technical requirements.Conclusion The infrared channel can track the change in the blackbody signal on the satellite with modifications in time and the surrounding environment. Thus
the calibration coefficient of the infrared channel can be corrected in real-time. The expected goal of real-time radiometric calibration in orbit can be achieved. This lays a foundation for the quantitative inversion of SST and can obtain and develop high-quality global SST products.
海洋一号信息获取海表温度红外光电导探测器直流恢复噪声等效温差调制传递函数
HY-1information acquisitionSea Surface Temperature (SST)infrared photoconductive detectorDC recoverynoise equivalent temperature differenceModulation Transfer Function (MTF)
Feng Q, Zhang S M, Zheng L H and Wang W Y. 2003. Design and on-orbit performance evaluation of water color scanner for China ocean-1 satellite. Spacecraft Engineering, 12(3): 47-55
冯旗, 张恕明, 郑列华, 王维扬. 2003. 中国海洋一号卫星水色扫描仪设计与在轨性能评估. 航天器工程, 12(3): 47-55
Hua C Y and Tong S B. 2006. Fundamentals of Analog Electronics. 4th ed. Beijing: Higher Education Press: 366-367
华成英, 童诗白. 2006. 模拟电子技术基础.4版. 北京: 高等教育出版社: 366-367
Jiang X W, Lin M S and Zhang Y G. 2016. Progress and prospect of Chinese ocean satellites. Journal of Remote Sensing, 20(5): 1185-1198
蒋兴伟, 林明森, 张有广. 2016. 中国海洋卫星及应用进展. 遥感学报, 20(5): 1185-1198 [DOI: 10.11834/jrs.20166153http://dx.doi.org/10.11834/jrs.20166153]
Jiang X W, Lin M S, Zhang Y G and Ma Y. 2018. Ocean remote sensing satellite and the history of application development and prospect. Satellite Application, (5): 10-18
蒋兴伟, 林明森, 张有广, 马毅. 2018. 海洋遥感卫星及应用发展历程与趋势展望. 卫星应用, (5): 10-18 [DOI: 10.3969/j.issn.1674-9030.2018.05.005http://dx.doi.org/10.3969/j.issn.1674-9030.2018.05.005]
Liu C, Bai Q, Tang G, Shao H and Bai Y. 2018. Development of marine remote sensing technology in China. Naval Architecture and Ocean Engineering, 34(1): 1-6
刘畅, 白强, 唐高, 绍辉, 白勇. 2018. 中国海洋遥感技术进展. 船舶与海洋工程, 34(1): 1-6 [DOI: 10.14056/j.cnki.naoe.2018.01.001http://dx.doi.org/10.14056/j.cnki.naoe.2018.01.001]
Liu S M and Ma H Z. 2007. Image aberrance of 45° multi-parallel scanning mirror and software correction. Infrared and Laser Engineering, 36(4): 526-529
刘素美, 马红章. 2007. 45°旋转扫描镜多元并扫的图像畸变及软件校正. 红外与激光工程, 36(4): 526-529 [DOI: 10.3969/j.issn.1007-2276.2007.04.026http://dx.doi.org/10.3969/j.issn.1007-2276.2007.04.026]
Ma X R, Zhang Y W and Bai Z G. 2003. Technical solution of China ocean-1 satellite. Spacecraft Engineering, 12(3): 1-8
马兴瑞, 张永维, 白照广. 2003. 中国海洋一号卫星技术方案. 航天器工程, 12(3): 1-8
Weng C M, Wu Z Y, Xia J and Huang P M. 2003. Design of data transmission subsystem and analysis of flight test parameters for China Ocean-1 satellite. Spacecraft Engineering, 12(3): 64-70
翁春明, 吴增印, 谢军, 黄普明. 2003. 中国海洋一号卫星数传分系统设计及飞行试验参数分析. 航天器工程, 12(3): 64-70
Xu N R and Bian N H. 1997. Infrared Radiation and Guidance. Beijing: National Defense Industry Press: 392-397
徐南荣, 卞南华. 1997. 红外辐射与制导. 北京: 国防工业出版社: 392-397
Zhang E. 2004. Design of optical system in 10-band radiometer for Chinese ocean color satellite. Optics and Optoelectronic Technology, 2(4): 21-22
张锷. 2004. “海洋一号”卫星10通道水色扫描仪光学系统的设计. 光学与光电技术, 2(4): 21-22 [DOI: 10.3969/j.issn.1672-3392.2004.04.007http://dx.doi.org/10.3969/j.issn.1672-3392.2004.04.007]
Zheng L H, Yin D Y and Feng X. 2007. Application for offsetting image rotation "K Mirror" in COCTS. Infrared Technology, 29(1): 17-21
郑列华, 尹达一, 冯鑫. 2007. K镜消像旋机构在海洋卫星水色仪中的应用. 红外技术, 29(1): 17-21 [DOI: 10.3969/j.issn.1001-8891.2007.01.005http://dx.doi.org/10.3969/j.issn.1001-8891.2007.01.005]
Zhou S C. 2014. Introduction to Advanced Infrared Optoelectronic Engineering. Beijing: Science Press: 185-186
周世椿. 2014. 高级红外光电工程导论. 北京: 科学出版社: 185-186
相关文章
相关作者
相关机构