白龙江流域潜在滑坡InSAR识别与发育特征研究
Early identification and characteristics of potential landslides in the Bailong River Basin using InSAR technique
- 2021年25卷第2期 页码:677-690
纸质出版日期: 2021-02-07
DOI: 10.11834/jrs.20210094
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-02-07 ,
扫 描 看 全 文
李媛茜,张毅,苏晓军,赵富萌,梁懿文,孟兴民,贾俊.2021.白龙江流域潜在滑坡InSAR识别与发育特征研究.遥感学报,25(2): 677-690
Li Y X,Zhang Y,Su X J,Zhao F M,Liang Y W,Meng X M and Jia J. 2021. Early identification and characteristics of potential landslides in the Bailong River Basin using InSAR technique. National Remote Sensing Bulletin, 25(2):677-690
白龙江流域地处甘肃省东南部,位于青藏高原、黄土高原和四川盆地的交汇处。区内断裂构造发育、新构造运动活跃、地震频繁,加之多见的暴雨和持续降雨天气,使得流域内地质灾害频发,且分布范围广泛,其中以滑坡、泥石流灾害较为显著。本研究基于合成孔径雷达干涉测量技术,对白龙江流域进行区域尺度上的时序地表变形监测,得出2018年—2019年雷达视线方向的形变速率范围为 -158 —110 mm/a,并在人口分布集中的河谷区圈定出潜在滑坡点共计114处,并进行野外验证。统计发现研究区潜在滑坡多集中分布于两岸坡度20°— 40°、坡向135°— 270°、高差小于150 m、面积小于5×10
4
m
2
的千枚岩等软弱岩层中。牙豁口滑坡发生破坏前,滑坡中上部变形剧烈,变形速率达38 mm/a,于07-19在该区域剪出并不断向下推移,最终进入岷江。结合滑前的变形特征和滑坡地貌,将牙豁口滑坡分为搬运区、流通区和堆积区。该滑坡事件证明了InSAR技术在潜在滑坡早期识别中的有效性和可靠性。本研究可为白龙江流域的滑坡调查、综合治理和防灾减灾提供科学依据和参考。
The Bailong River Basin is located in the southeast of Gansu Province and situated at the intersection of the Qinghai–Tibet Plateau
the Loess Plateau
and the Sichuan Basin. Geohazards
such as landslides and debris flows
have high frequency and wide distribution due to the impact of rainfall
tectonic activity
and earthquakes. These phenomena pose a serious threat to the safety of life and property of the local people. Investigating a new method to detect potential landslide and study its characteristics is important to provide key supports for local disaster prevention and mitigation.In this study
an InSAR technique called Small Baseline Subset was selected to process 60 Sentinel-1A SAR images acquired from March 2018 to March 2019. Moreover
the study area was clipped into 8 blocks to improve the efficiency of data processing and minimize the errors caused by the complex terrain of the region.On the basis of the abovementioned method
the mean surface displacement rates ranging from -158 and 100 mm/year along the line-of-sight direction were detected during March 2018 and March 2019. A total of 114 potential landslides were investigated and identified in the Bailong River Basin based on optical image interpretation and field survey. Statistical analysis of their basic information shows that most of the potential landslides tend to develop in the S
SSW
and SSE-faced slope with a gradient of 20°—40°. The elevation difference of potential landslides is less than 150 m. The slope material is mostly composed of slope deposits and heavy weathered rocks
such as phyllite. The majority of potential landslides have an area less than 5×10
4
m
2
.Yahuokou landslide
which was investigated as a potential landslide with displacement rates
>
38 mm/year
broke and ran into Min River from 19 July 2019. On the basis of the analysis of landslide pre-cursory deformation and geomorphology
the landslide was divided into three sections: source
propagation
and accumulation areas. The successful identification of potential landslide demonstrates the applicability and efficiency of InSAR technique in landslide investigation and identification. This research provides foundation and scientific support for landslide mapping and disaster prevention in Bailong River Basin.
白龙江流域潜在滑坡InSAR技术地表形变早期识别发育特征牙豁口滑坡
Bailong River Basinpotential landslideInSARground deformationearly identificationcharacteristicsYahuokou landslide
Berardino P, Fornaro G, Lanari R and Sansosti E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2375-2383 [DOI: 10.1109/TGRS.2002.803792http://dx.doi.org/10.1109/TGRS.2002.803792]
Cerdà A. 1996. Seasonal variability of infiltration rates under contrasting slope conditions in southeast Spain. Geoderma, 69(3/4): 217-232 [DOI: 10.1016/0016-7061(95)00062-3http://dx.doi.org/10.1016/0016-7061(95)00062-3]
Chen M. 2017. Research on development characteristics and formation mechanism of large-scale landslides in Bailongjiang River Basin. Chengdu: Chengdu University of Technology
陈明. 2017. 白龙江流域大型滑坡发育特征及成因机制研究. 成都: 成都理工大学
Du G L, Zhang Y S, Gao J C, Sun Y C and Guo C B. 2016. Landslide susceptibility assessment based on GIS in Bailongjiang watershed, Gansu Province. Journal of Geomechanics, 22(1): 1-11
杜国梁, 张永双, 高金川, 孙於春, 郭长宝. 2016. 基于GIS的白龙江流域甘肃段滑坡易发性评价. 地质力学学报, 22(1): 1-11 [DOI: 10.3969/j.issn.1006-6616.2016.01.001http://dx.doi.org/10.3969/j.issn.1006-6616.2016.01.001]
Fan X Y and Qiao J P. 2004. Topography discriminance of the assessment of Landslide Hazard Degree. Journal of Mountain Science, 22(6): 730-734
樊晓一, 乔建平. 2004. 滑坡危险度评价的地形判别法. 山地学报, 22(6): 730-734 [DOI: 10.3969/j.issn.1008-2786.2004.06.016http://dx.doi.org/10.3969/j.issn.1008-2786.2004.06.016]
Guo C B, Ren S S, Li X, Zhang Y S, Yang Z H, Wu R A and Jin J J. 2019. Development characteristics and reactivation mechanism of the Jiangdingya ancient landslide in the Nanyu Town, Zhouqu County, Gansu Province. Geoscience, 33(1): 206-217
郭长宝, 任三绍, 李雪, 张永双, 杨志华, 吴瑞安, 金继军. 2019. 甘肃舟曲南峪江顶崖古滑坡发育特征与复活机理. 现代地质, 33(1): 206-217 [DOI: 10.19657/j.geoscience.1000-8527.2019.01.20http://dx.doi.org/10.19657/j.geoscience.1000-8527.2019.01.20]
Guo H D and Zhang L. 2019. 60 years of radar remote sensing: Four-stage development. Journal of Remote Sensing, 23(6): 1023-1035
郭华东, 张露. 2019. 雷达遥感六十年: 四个阶段的发展. 遥感学报, 23(6): 1023-1035 [DOI: 10.11834/jrs.20199398http://dx.doi.org/10.11834/jrs.20199398]
Guzzetti F, Manunta M, Ardizzone F, Pepe A, Cardinali M, Zeni G, Reichenbach P and Lanari R. 2009. Analysis of ground deformation detected using the SBAS-DInSAR technique in Umbria, Central Italy. Pure and Applied Geophysics, 166(8/9): 1425-1459 [DOI: 10.1007/s00024-009-0491-4http://dx.doi.org/10.1007/s00024-009-0491-4]
Haque U, Da Silva P F, Devoli G, Pilz J, Zhao B X, Khaloua A, Wilopo W, Andersen P, Lu P, Lee J, Yamamoto T, Keeling D, Wu J H and Glass G E. 2019. The human cost of global warming: deadly landslides and their triggers (1995-2014). Science of the Total Environment, 682: 673-684 [DOI: 10.1016/j.scitotenv.2019.03.415http://dx.doi.org/10.1016/j.scitotenv.2019.03.415]
Jiang S, Wen B P, Li Z H and Zhao C. 2016. An analysis of the activity features of the Suoertou landslide in Zhouqu county of Gansu. Hydrogeology and Engineering Geology, 43(2): 69-74, 92
蒋树, 文宝萍, 黎志恒, 赵成. 2016. 甘肃舟曲锁儿头滑坡活动特征分析. 水文地质工程地质, 43(2): 69-74, 92 [DOI: 10.16030/j.cnki.issn.1000-3665.2016.02.10http://dx.doi.org/10.16030/j.cnki.issn.1000-3665.2016.02.10]
Jiang X Z, Wen B P, Jiang S, Feng C H, Zhao C and Li R D. 2015. Main factors analysis for controlling kinematic behavior of Suoertou landslide. Journal of Jilin University (Earth Science Edition), 45(6): 1798-1807
蒋秀姿, 文宝萍, 蒋树, 冯传煌, 赵成, 李瑞冬. 2015. 甘肃舟曲锁儿头滑坡活动的主控因素分析. 吉林大学学报 (地球科学版), 45(6): 1798-1807 [DOI: 10.13278/j.cnki.jjuese.201506203http://dx.doi.org/10.13278/j.cnki.jjuese.201506203]
Lee C H, Lin S H, Kao C L, Hong M Y, Huang P C, Shih C L and Chuang C C. 2020. Impact of climate change on disaster events in metropolitan cities-trend of disasters reported by Taiwan national medical response and preparedness system. Environmental Research, 183: 109186 [DOI: 10.1016/j.envres.2020.109186http://dx.doi.org/10.1016/j.envres.2020.109186]
Li S Z, Dai S, Wang H W and Zhang X. 2015. Fault features and their implications on distribution and formation of landslides in Bailongjiang Region. Journal of Lanzhou University (Natural Sciences), 51(2): 145-152
李淑贞, 戴霜, 王华伟, 张翔. 2015. 白龙江地区断裂构造与滑坡分布及发生关系. 兰州大学学报(自然科学版), 51(2): 145-152 [DOI: 10.13885/j.issn.0455-2059. 2015. 02.001http://dx.doi.org/10.13885/j.issn.0455-2059.2015.02.001]
Meng X M, Chen G, Guo P, Xiong M Q and Wasowski J. 2013. Research of landslides and debris flows in Bailong River Basin: progress and prospect. Marine Geology and Quaternary Geology, 33(4): 1-15
孟兴民, 陈冠, 郭鹏, 熊木齐, Wasowski J. 2013. 白龙江流域滑坡泥石流灾害研究进展与展望. 海洋地质与第四纪地质, 33(4): 1-15 [DOI: 10.3724/SP.J.1140.2013.04001http://dx.doi.org/10.3724/SP.J.1140.2013.04001]
Pan G T, Xiao Q H, Lu S N, Deng J F, Feng Y M, Zhang K X, Zhang Z Y, Wang F G, Xing G F, Hao G J and Feng Y F. 2009. Subdivision of tectonic units in China. Geology in China, 36(1): 1-28
潘桂堂, 肖庆辉, 陆松年, 邓晋福, 冯益民, 张克信, 张智勇, 王方国, 邢光福, 郝国杰, 冯艳芳. 2009. 中国大地构造单元划分. 中国地质, 36(1): 1-28 [DOI: 10.3969/j.issn.1000-3657.2009.01.001http://dx.doi.org/10.3969/j.issn.1000-3657.2009.01.001]
Pang M K. 2011. Study on the Developing Characteristics and Genesis Geological Environmental Conditions of Landslides in the Bailongjiang River Basin. Chengdu: Chengdu University of Technology
庞茂康. 2011. 白龙江流域滑坡发育特征及其成因的地质环境条件研究. 成都: 成都理工大学
Schmidt D A, Bürgmann R. 2003. Time-Dependent land uplift and subsidence in the Santa Clara Valley, California, from a large interferometric synthetic aperture radar data set. Journal of Geophysical Research: Solid Earth, 108(B9): 2416 [DOI: 10.1029/2002JB002267http://dx.doi.org/10.1029/2002JB002267]
Tang X K. 2014. Fractal Features of Landslides in the Area Southern Gansu Province in the Bailongjiang River Basin. Lanzhou: Lanzhou University
唐新凯. 2014. 白龙江流域甘肃段滑坡灾害分形特征. 兰州: 兰州大学
Wang C Y and Chen J P. 2007. Study on the relationship between aspect and slope stability. Technological Development of Enterprise, 26(12): 12-14, 20
王朝阳, 陈吉普. 2007. 坡向与斜坡稳定性的关系研究. 企业技术开发, 26(12): 12-14, 20 [DOI: 10.3969/j.issn.1006-8937-B.2007.12.004http://dx.doi.org/10.3969/j.issn.1006-8937-B.2007.12.004]
Wang T and Liao M S. 2018. Coseismic displacement derived from Sentinel-1 data: latest techniques and case studies. Journal of Remote Sensing, 22(S1): 120-127
王腾, 廖明生. 2018. Sentinel-1卫星数据提取同震形变场: 最新技术及震例. 遥感学报, 22(增刊): 120-127 [DOI: 10.11834/jrs.20187480http://dx.doi.org/10.11834/jrs.20187480]
Wasowski J and Bovenga F. 2014. Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: current issues and future perspectives. Engineering Geology, 174: 103-138 [DOI: 10.1016/j.enggeo.2014.03.003http://dx.doi.org/10.1016/j.enggeo.2014.03.003]
Xiao L, He Y G, Xing X M, Wen D B, Tong C G, Chen L F and Yu X Y. 2019. Time series subsidence analysis of drilling solution miningrock salt mines based on Sentinel-1 data and SBAS-InSAR technique. Journal of Remote Sensing, 23(3): 501-513
肖亮, 贺跃光, 邢学敏, 闻德保, 童成功, 陈立福, 俞晓莹. 2019. Sentinel-1和SBAS-InSAR分析钻井水溶岩盐矿山时序沉降. 遥感学报, 23(3): 501-513 [DOI: 10.11834/jrs.20198292http://dx.doi.org/10.11834/jrs.20198292]
Yang W M, Huang X, Zhang C S and Si H B. 2014. Deformation behavior of landslides and their formation mechanism along Pingding Huama active fault in Bailongjiang River region. Journal of Jilin University (Earth Science Edition), 44(2): 574-583
杨为民, 黄晓, 张春山, 司海宝. 2014. 白龙江流域坪定—化马断裂带滑坡特征及其形成演化. 吉林大学学报(地球科学版), 44(2): 574-583 [DOI: 10.13278/j.cnki.jjuese.201402201http://dx.doi.org/10.13278/j.cnki.jjuese.201402201]
Yu Z S. 2007. Study on prediction of disaster loss and causes of Xieliupo landslides. Gansu Science and Technology, 23(12): 72-76
余志山. 2007. 泄流坡滑坡灾害损失预测及成灾方式研究. 甘肃科技, 23(12): 72-76 [doi: 10.3969/j.issn.1000-0952.2007.12.027]
Zhang J X, Gong J, Ma X C and Liu D Q. 2018. GeoDA-based spatial correlation analysis of landscape fragmentation in Bailongjiang Watershed of Gansu. Chinese Journal of Ecology, 37(5): 1476-1483
张金茜, 巩杰, 马学成, 柳冬青. 2018. 基于GeoDA的甘肃白龙江流域景观破碎化空间关联性. 生态学杂志, 37(5): 1476-1483 [DOI: 10.13292/j.1000-4890.201805.017http://dx.doi.org/10.13292/j.1000-4890.201805.017]
Zhang Y. 2018. Detecting Ground Deformation and Investigating Landslides Using InSAR Technique—Taking Middle Reach of Bailong River Basin as an Example. Lanzhou: Lanzhou University
张毅. 2018. 基于InSAR技术的地表变形监测与滑坡早期识别研究——以白龙江流域中游为例. 兰州: 兰州大学
Zhang Y D, Li Y D, Dong J, Fan Q, Che B, Zhang L, Zhou Y and Liao M S. 2019. Landslide hazard detection in Markam with time-series InSAR analyses. Journal of Remote Sensing, 23(5): 987-996
张亚迪, 李煜东, 董杰, 范强, 车彬, 张路, 周杨, 廖明生. 2019. 时序InSAR技术探测芒康地区滑坡灾害隐患. 遥感学报, 23(5): 987-996 [DOI: 10.11834/jrs.20198025http://dx.doi.org/10.11834/jrs.20198025]
Zhang Y J, Wan Z, Xie C, Shao Y, Yuan M H, Chen W and Wang X. 2015. Deformation analysis of the seawall in Qiantang estuary with multi-temporal InSAR. Journal of Remote Sensing, 19(2): 339-354
张云俊, 万紫, 谢酬, 邵芸, 袁名欢, 陈武, 王新. 2015. 基于时间序列雷达干涉测量的钱塘江海塘形变分析. 遥感学报, 19(2): 339-354 [DOI: 10.11834/jrs.20154055http://dx.doi.org/10.11834/jrs.20154055]
Zhao F M, Zhang Y, Meng X M, Su X J and Shi W. 2019. Early identification of geological hazards in the Gaizi valley near the Karakoran Highway based on SBAS-InSAR technology. Hydrogeology and Engineering Geology, 47(1): 142-152
赵富萌, 张毅, 孟兴民, 苏晓军, 石伟. 2019. 基于小基线集雷达干涉测量的中巴公路盖孜河谷地质灾害早期识别. 水文地质工程地质, 47(1): 142-152 [DOI: 10.16030/j.cnki.issn.1000-3665.201902020http://dx.doi.org/10.16030/j.cnki.issn.1000-3665.201902020]
相关作者
相关机构