激光掩星探测大气UTLS温度和水汽的方法及仿真
Retrieval method and simulation of UTLS temperature and water vapor by laser occultation
- 2022年26卷第10期 页码:1935-1945
纸质出版日期: 2022-10-07
DOI: 10.11834/jrs.20210095
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-10-07 ,
扫 描 看 全 文
李虎,王建宇,洪光烈.2022.激光掩星探测大气UTLS温度和水汽的方法及仿真.遥感学报,26(10): 1935-1945
Li H,Wang J Y and Hong G L. 2022. Retrieval method and simulation of UTLS temperature and water vapor by laser occultation. National Remote Sensing Bulletin, 26(10):1935-1945
以高精度和高垂直分辨率探测大气区间对流层顶—平流层底UTLS(Upper Troposphere/Lower Stratosphere,5—35 km)的温度和水汽廓线是提高大气条件变化监测水平的关键,而利用激光掩星方法同时探测温度和水汽则是对现有探测技术的重要补充。本文研究了激光掩星协同探测和反演温度和水汽分子数密度的方法,其中重点研究了双吸收波长近红外激光反演温度的方法,具体为从近红外波段氧气吸收光谱中,选择2个不同跃迁能级对应的特征吸收峰,在每个吸收峰附近各选出1个吸收线,利用2个吸收线对应的双吸收波长激光以及参考线对应波长激光进行掩星探测,进而由探测数据反演出温度。整个温度和水汽协同反演步骤是先反演温度廓线,然后由温度廓线以及5 km参考高度处的压强先验值计算得到压强廓线,最后在温度和压强廓线基础上,结合水汽单吸收波长和参考波长激光掩星数据,反演得到水汽分子数密度廓线。此外,本文对探测和反演过程进行了模拟仿真,通过在近红外波段选择合适的氧气吸收波长和水汽吸收波长,模拟得到掩星透过率数据,以此反演得到温度和水汽分子数密度廓线。并通过对整个过程的分析,明确了反演过程中的误差项及其传递关系,结合数值仿真结果,说明了各个误差项的影响大小。结果显示,在UTLS区间内,温度反演误差总体小于1.05 K,水汽分子数密度反演误差总体小于4%,该误差范围说明了温度和水汽协同反演方法的可行性。
Measuring temperature and water vapor profiles with high accuracy and vertical resolution in the upper troposphere and lower stratosphere (UTLS
5—35 km in height) is significant for improved monitoring of condition changes in the free atmosphere
and simultaneously measuring with laser occultation method is a significant supplement to the existing exploration technology. Here we introduce an algorithm to retrieve temperature and water vapor profiles from laser occultation data
and thoroughly describe the temperature retrieval method from dual oxygen absorption wavelength laser occultation data.
In this paper
the method of laser occultation cooperative measuring and retrieval of temperature and water vapor molecular number density is studied and the emphasis is on the method of deriving temperature from detected data. The method is selecting two characteristic absorption peaks corresponding to different transition energy levels from the near-infrared band oxygen absorption spectrum
choosing one absorption line near each absorption peak
using the double absorption wavelength laser corresponding to the two absorption lines and the wavelength laser corresponding to the reference line for occultation measuring.
The algorithm steps of cooperative retrieval of temperature and water vapor are retrieving temperature profile from occultation data and deriving pressure profile from temperature profile and the pressure prior value at the reference height of 5 km
then as a second step
retrieving water vapor molecular number density from single water vapor absorption wavelength and reference wavelength laser occultation data.
We furthermore simulate the occultation process with selected oxygen absorption wavelength and water vapor absorption wavelength laser signals
and retrieve from the simulated transmittance data. The error term and its transfer relationship in the retrieval process are analyzed and the influence of each error term is presented by the simulation results. This results show that the temperature retrieval errors are generally smaller than 1.05 K
and the water vapor molecular number density retrieval errors are generally smaller 4%
which shows the feasibility of the temperature and water vapor collaborative retrieval method.
激光掩星Abel积分反变换大气温度双吸收波长大气水汽
laser occultationinverse Abel integral transformatmospheric temperature and pressuredouble absorption wavelengthatmospheric water vapor
Cao X F,Li X Y,Luo Q,Liu S H,Li P and Liu X. 2021. Review of temperature profile inversion of satellite-borne infrared hyperspectral sensors. National Remote Sensing Bulletin, 25(2):577-598
曹西凤,李小英,罗琪,刘双慧,李鹏,刘欣. 2021. 星载红外高光谱传感器温度廓线反演综述. 遥感学报,25(2): 577-598 [DOI: 10.11834/jrs.20210009http://dx.doi.org/10.11834/jrs.20210009]
Chen S J. 2018. Study on Error Mechanism of High Precision Space Quantum Communication Tracking and Pointing Technology. Shanghai: Shanghai Institute of Technology Physics of Chinese Academy of Sciences (陈少杰. 2018. 高精度空间量子通信跟瞄技术的误差机理研究. 上海:中国科学院上海技术物理研究所)
Cucurull L, Derber J C, Treadon R and Purser R J. 2008. Preliminary impact studies using Global Positioning System radio occultation profiles at NCEP. Monthly Weather Review, 136(6): 1865-1877 [DOI: 10.1175/2007 mwr2260.1http://dx.doi.org/10.1175/2007mwr2260.1]
Guo P. 2006. GPS Radio Occultation Technology and CHAMP Occultation Data Retrieval. Shanghai: Shanghai Astronomical Observatory, Chinese Academy of Sciences
郭鹏. 2006. 无线电掩星技术与CHAMP掩星资料反演. 上海: 中国科学院研究生院(上海天文台)
Hoffmann A, Clifford D, Aulinas J, Carton J G, Deconinck F, Esen B, Hüsing J, Kern K, Kox S, Krejci D, Krings T, Lohrey S, Romano P, Topham R and Weitnauer C. 2012. A novel satellite mission concept for upper air water vapour, aerosol and cloud observations using integrated path differential absorption LiDAR limb sounding. Remote Sensing, 4(4): 867-910 [DOI: 10.3390/rs4040867http://dx.doi.org/10.3390/rs4040867]
Komjathy A, Wilson B, Pi X, Akopian V, Dumett M, Iijima B, Verkhoglyadova O and Mannucci A J. 2010. JPL/USC GAIM: on the impact of using COSMIC and ground-based GPS measurements to estimate ionospheric parameters. Journal of Geophysical Research, 115(A2): A02307 [DOI: 10.1029/2009JA014420http://dx.doi.org/10.1029/2009JA014420]
Kursinski E R, Syndergaard S, Flittner D, Feng D, Hajj G, Herman B, Ward D and Yunck T. 2002. A microwave occultation observing system optimized to characterize atmospheric water, temperature, and geopotential via absorption. Journal of Atmospheric and Oceanic Technology, 19(12): 1897-1914 [DOI: 10.1175/1520-0426(2002)019<1897:AMOOSO>2.0.CO;2http://dx.doi.org/10.1175/1520-0426(2002)019<1897:AMOOSO>2.0.CO;2]
Lin Y X. 2017. Research on Electro-Optical Tracking System for Wireless Laser Communication. Wuhan: Wuhan University
林贻翔. 2017. 无线激光通信光电跟瞄技术研究. 武汉: 武汉大学
Liu Q F. 2007. Research on Closed-Loop Beam Pointing Control Technology in Intersatellite Optical Communication. Harbin: Harbin Institute of Technology
柳青峰. 2007. 卫星光通信中光束指向闭环控制技术研究. 哈尔滨: 哈尔滨工业大学
Luo T. 2005. The Research on Acquisition and Tracking Technologies of ATP System in Optical Intersatellite Communications. Chengdu: University of Electronic Science and Technology of China (罗彤. 2005. 星间光通信ATP中捕获, 跟踪技术研究. 成都: 电子科技大学)
Olsen K S, Toon G C, Boone C D and Strong K. 2016. New temperature and pressure retrieval algorithm for high-resolution infrared solar occultation spectroscopy: analysis and validation against ACE-FTS and COSMIC. Atmospheric Measurement Techniques, 9(3): 1063-1082 [DOI: 10.5194/amt-9-1063-2016http://dx.doi.org/10.5194/amt-9-1063-2016]
Proschek V, Kirchengast G and Schweitzer S. 2011. Greenhouse gas profiling by infrared-laser and microwave occultation: retrieval algorithm and demonstration results from end-to-end simulations. Atmospheric Measurement Techniques Discussions, 4(10): 2273-2328 [DOI: 10.5194/amtd-4-2273-2011http://dx.doi.org/10.5194/amtd-4-2273-2011]
Rothman L S,Gordon, I E, Babikov, Y, Barbe, A, Chris Benner, D, Bernath, P F, Birk, M, Bizzocchi, L, Boudon, V, Brown, L R, Campargue, A, Chance, K, Cohen, E A, Coudert, L H, Devi, V M, Drouin, B J, Fayt, A, Flaud, J M, Gamache, R R, Harrison, J J, Hartmann, J M, Hill, C, Hodges, J T, Jacquemart, D, Jolly, A, Lamouroux, J, Le Roy, R J, Li, G, Long, D A, Lyulin, O M, Mackie, C J, Massie, S T, Mikhailenko, S, Müller, H S P, Naumenko, O V, Nikitin, A V, Orphal, J, Perevalov, V, Perrin, A, Polovtseva, E R, Richard, C, Smith, M A H, Starikova, E, Sung, K, Tashkun, S, Tennyson, J, Toon, G C, Tyuterev, VI G, Wagner. G. 2013. The HITRAN 2012 Molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 130:4-50 [DOI:10.1016/j.jqsrt.2013.07.002http://dx.doi.org/10.1016/j.jqsrt.2013.07.002]
Schweitzer S. 2010. The ACCURATE Concept and the Infrared Laser Occultation Technique: Mission Design and Assessment of Retrieval Performance. Austria: University of Graz
Schweitzer S, Kirchengast G and Proschek V. 2011a. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites. Atmospheric Measurement Techniques, 4(10):2273-2292 [DOI: 10.5194/amt-4-2273-2011http://dx.doi.org/10.5194/amt-4-2273-2011]
Schweitzer S, Kirchengast G, Schwaerz M, Fritzer J and Gorbunov M E. 2011b. Thermodynamic state retrieval from microwave occultation data and performance analysis based on end-to-end simulations. Journal of Geophysical Research: Atmospheres, 116(D10): D10301 [DOI: 10.1029/2010JD014850http://dx.doi.org/10.1029/2010JD014850]
Wan L B. 2019. Research on High-Precision Optical Tracking for Precise Beam Pointing. Harbin: Harbin Institute of Technology
万力宾. 2019. 用于光束精确指向的高精度光学跟瞄研究. 哈尔滨: 哈尔滨工业大学
Wen T. 2006. Study on the Key Techniques of an Acquisition Tracking and Pointing System in Wireless Laser Communication. Changsha: National University of Defense Technology (温涛. 2006. 无线激光通信中ATP关键技术研究. 长沙: 国防科学技术大学)
Zhang J M. 2018. Retrieval on GPS Neutral Atmospheric Radio Occultation. Wuhan: Institute of Seismology, China Earthquake Administration
张纪满. 2018. GPS无线电掩星中性大气反演. 武汉: 中国地震局地震研究所
相关文章
相关作者
相关机构