动态变化率与最大差值相结合的陆表生态变化检测
Terrestrial change detection integrating the Dynamic Ratio and the Max-difference Algorithm
- 2021年25卷第6期 页码:1338-1350
纸质出版日期: 2021-06-07
DOI: 10.11834/jrs.20210129
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-06-07 ,
扫 描 看 全 文
李晓东,宋开山.2021.动态变化率与最大差值相结合的陆表生态变化检测.遥感学报,25(6): 1338-1350
Li X D and Song K S. 2021. Terrestrial change detection integrating the Dynamic Ratio and the Max-difference Algorithm. National Remote Sensing Bulletin, 25(6):1338-1350
为了实现更大尺度上的陆表生态变化检测,一种基于综合生态指数的动态变化检测方法用于不同时期卫星影像变化信息的提取。本文以东北地区的松嫩平原地表植被覆盖类型作为主要研究对象,2006年和2018年作为变化检测研究的标准年,陆地资源卫星影像数据作为实验数据源。动态变化的主要检测内容划分为年内变化和年际变化,最大差值算法计算影像数据的年内最大变化差异,同时动态比率算法计算年际动态变化。方法的实现过程如下,选择3个主要生态指数(水体指数、植被指数和土壤指数)用于计算年内最大差异和年际动态比率。然后,采用主成分分析法提取年内最大差异和年际动态比率的第一主成分,主要研究内容包括年内变化的显著性生态评价和年际变化方向、变换类型的分析与评价以及方法精度的验证。最终结果表明:(1)动态比率算法用于研究区年际变化检测,具有更高的变化检测精度,总体精度为93.80%,Kappa系数为0.876。(2)年内生态指数变化的最大差值用于定量衡量研究区年内变化检测。其中,第一主成分保留了83.04%的变化信息。同时,植被和水体对研究区的陆表生态变化有正方向的贡献。土壤裸露程度对陆表生态变化有负方向贡献。动态比率变化检测方法不需要设定适合的、动态的变化阈值,更便于大范围高效更新土地覆被类型。
The dynamic variation of the ecological environment
as the material basis of human breeding
directly affects people’s quality of life. The terrestrial ecosystem continuously evolves with the developing human society. The rapid and accurate extraction of land-cover change information is conducive to ecological environment protection
the scientific management of natural resources
and the maintaining the human-earth relationship.The objective of this paper is to determine how to construct the dynamic ratio method with the unified threshold to quantitatively measure the change direction
the changed region
and the change type of wetland.
On the basis of remote sensing ecological index (i.e.
MNDWI
NDVI
and NDSI)
the change detection method was proposed to extract the max-difference in the growing season (2018) and the inter-annual dynamic change rate
respectively. The Landsat images data in 2006 and 2018 were used. The main goal is the annual significant assessment of ecological change in land-cover
the determination of the ecological change direction of land-cover
and the analysis of the transformation types of land cover. Principal component analysis was used to extract the first principal component of the monthly max-difference and inter-annual dynamic change rate. Finally
5626 samples were collected by using visual interpretation. Accuracy assessment was subsequently conducted on the result of the annual and inter-annual change detection.
(1) The dynamic ratio method is suitable for the inter-annual change detection in the study area and has higher change detection accuracy and greater stability than single-index (or band) change detection. The overall accuracy of the method is 93.8%
and the Kappa coefficient is 0.876. (2) The monthly max-difference of the ecological indexes (i.e.
MNDWI
NDVI
and NDSI) was used to quantitatively measure the annual ecological variation in the study area. Finally
the first principal component retained 83.04% change information. Moreover
land vegetation and water have a positive contribution to the surface ecological change in the study area. The normalized difference soil index contributed negative effects to land ecological change. The dynamic change detection method does not need to set the dynamic threshold
and is more suitable for the efficient updating of land-cover types on a global scale.
The quick extracting method of change information with single-phase remote sensing image between two different times enriches remote sensing monitoring technology. Such enhancement is salient especially in the evaluation of land surface ecological factors. It also provides updated data with support for natural resource inventory at the global scale.
变化检测动态变化率土地覆被类型松嫩平原中国东北
the change detectionthe Dynamic Ratio methodremote sensing land coverSongnen PlainNortheast China
Asner G P, Keller M, Pereira Jr R and Zweede J C. 2002. Remote sensing of selective logging in Amazonia: assessing limitations based on detailed field observations, Landsat ETM+, and textural analysis. Remote Sensing of Environment, 80(3): 483-496 [DOI: 10.1016/S0034-4257(01)00326-1http://dx.doi.org/10.1016/S0034-4257(01)00326-1]
Bovolo F and Bruzzone L. 2009. An adaptive multiscale random field technique for unsupervised change detection in VHR multitemporal images//Proceedings of 2009 IEEE International Geoscience and Remote Sensing Symposium. Cape Town, South Africa: IEEE [DOI: 10.1109/IGARSS.2009.5417492http://dx.doi.org/10.1109/IGARSS.2009.5417492]
Coppin P, Jonckheere I, Nackaerts K and Lambin E. 2004. Review article digital change detection methods in ecosystem monitoring: a review. International Journal of Remote Sensing, 25(9): 1565-1596 [DOI: 10.1080/0143116031000101675http://dx.doi.org/10.1080/0143116031000101675]
Cui B, Zhang Y H, Yan L and Wei J J. 2020. Dual-thresholds change detection in GF-3 SAR images. Journal of Remote Sensing(Chinese), 24(1): 1-10
崔斌,张永红,闫利,魏钜杰.2020.高分三号SAR影像双阈值变化检测.遥感学报,24(1): 1-10 [DOI:10.11834/jrs.20208179http://dx.doi.org/10.11834/jrs.20208179]
Du P J, Wang X, Meng Y P, Lin C, Zhang P and Lu G. 2020. Effective change detection approaches for geographic national condition monitoring and land cover map updating. Journal of Geo-information Science, 22(4): 857-866
杜培军, 王欣, 蒙亚平, 林聪, 张鹏, 卢刚. 2020. 面向地理国情监测的变化检测与地表覆盖信息更新方法. 地球信息科学学报, 22(4): 857-866 [DOI: 10.12082/dqxxkx.2020.190747http://dx.doi.org/10.12082/dqxxkx.2020.190747]
Duan Y N, Zhang L F, Yan L, Wu T X, Liu Y S and Tong Q X. 2014. Relative radiometric correction methods for remote sensing images and their applicability analysis. Journal of Remote Sensing, 18(3): 597-617
段依妮, 张立福, 晏磊, 吴太夏, 刘跃生, 童庆禧. 2014. 遥感影像相对辐射校正方法及适用性研究. 遥感学报, 18(3): 597-617 [DOI: 10.11834/jrs.20143204http://dx.doi.org/10.11834/jrs.20143204]
Farrag A F, Mostafa Y G and Mohamed N A. 2020. Detecting land cover changes using VHR satellite images: a comparative study. Journal of Engineering Sciences Assiut University Faculty of Engineering, 48(2): 200-211 [DOI: 10.13140/RG.2.2.13322.62403http://dx.doi.org/10.13140/RG.2.2.13322.62403]
Huang C Q, Goward S N, Schleeweis K, Thomas N, Masek J G and Zhu Z L. 2009. Dynamics of national forests assessed using the Landsat record: case studies in eastern United States. Remote Sensing of Environment, 113(7): 1430-1442 [DOI: 10.1016/j.rse.2008.06.016http://dx.doi.org/10.1016/j.rse.2008.06.016]
Hussain M, Chen D M, Cheng A, Wei H and Stanley D. 2013. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 80: 91-106 [DOI: 10.1016/j.isprsjprs.2013.03.006http://dx.doi.org/10.1016/j.isprsjprs.2013.03.006]
Li Q and Zhou X S. 2011. Multivariate time series anomaly detection method based on KPCA. Computer Measurement and Control, 19(4): 822-825
李权, 周兴社. 2011. 基于KPCA的多变量时间序列数据异常检测方法研究. 计算机测量与控制, 19(4): 822-825 [DOI: 10.16526/j.cnki.11-4762/tp.2011.04.071http://dx.doi.org/10.16526/j.cnki.11-4762/tp.2011.04.071]
Liu F, Yang G, Han X Y, Jia G P and Wang N. 2020. Dynamic monitoring of eco-environmental quality in Horqin sandy land by remote sensing—a case study of Naiman banner. Research of Soil and Water Conservation, 27(5): 244-249, 258
刘峰, 杨光, 韩雪莹, 贾光普, 王宁. 2020. 科尔沁沙地生态环境质量遥感动态监测——以奈曼旗为例. 水土保持研究, 27(5): 244-249, 258 [DOI: 10.13869/j.cnki.rswc.20200518.001http://dx.doi.org/10.13869/j.cnki.rswc.20200518.001]
Liu H C and Zhang L. 2020. Adaptive threshold change detection based on type feature for remote sensing image. Journal of Remote Sensing(Chinese),24(6):728-738
刘红超,张磊.2020.面向类型特征的自适应阈值遥感影像变化检测.遥感学报,24(6):728-738 [DOI:10.11834/jrs.20208328http://dx.doi.org/10.11834/jrs.20208328]
Liu X H, Zhang Y, Dong G H, Hou G L and Jiang M. 2019. Landscape pattern changes in the Xingkai Lake Area, Northeast China. International Journal of Environmental Research and Public Health, 16(20): 3820 [DOI: 10.3390/ijerph16203820http://dx.doi.org/10.3390/ijerph16203820]
Lu D, Mausel P, Brondízio E and Moran E. 2004. Change detection techniques. International Journal of Remote Sensing, 25(12): 2365-2401 [DOI: 10.1080/0143116031000139863http://dx.doi.org/10.1080/0143116031000139863]
Man W D, Liu M Y, Wang Z M, Hao Y F, Xiang H X, Wei S Y, Mao D H, Jia M M and Ren C Y. 2020. Remote sensing investigation of grassland change in Northeast China during 1990~2015. China Environmental Science, 40(5): 2246-2253
满卫东, 刘明月, 王宗明, 郝玉峰, 相恒星, 魏思怡, 毛德华, 贾明明, 任春颖. 2020. 1990~2015年东北地区草地变化遥感监测研究. 中国环境科学, 40(5): 2246-2253 [DOI: 10.19674/j.cnki.issn1000-6923.2020.0257http://dx.doi.org/10.19674/j.cnki.issn1000-6923.2020.0257]
Naidu M S R, Kumar P R and Chiranjeevi K. 2018. Shannon and fuzzy entropy based evolutionary image thresholding for image segmentation. Alexandria Engineering Journal, 57(3): 1643-1655 [DOI: 10.1016/j.aej.2017.05.024http://dx.doi.org/10.1016/j.aej.2017.05.024]
Rouse Jr J W, Haas R H, Schell J A and Deering D W. 1974. Monitoring Vegetation Systems in the Great Plains with ERTS//Proceedings of the 3rd Earth Resources Technology Satellite. Washington, DC: NASA: 309-317
Sui H G, Feng W Q, Li W Z, Sun K M and Xu C. 2018. Review of change detection methods for multi-temporal remote sensing imagery. Geomatics and information Science of Wuhan University, 43(12): 1885-1898
眭海刚, 冯文卿, 李文卓, 孙开敏, 徐川. 2018. 多时相遥感影像变化检测方法综述. 武汉大学学报(信息科学版), 43(12): 1885-1898 [DOI: 10.13203/j.whugis20180251http://dx.doi.org/10.13203/j.whugis20180251]
Wang Y J, Shen X J and Lü X G. 2020. Change characteristics of landscape pattern and climate in marsh areas of northeast China during 1980-2015. Earth and Environment, 48(3): 348-357
王延吉, 神祥金, 吕宪国. 2020. 1980~2015年东北沼泽湿地景观格局及气候变化特征. 地球与环境, 48(3): 348-357 [DOI: 10.14050/j.cnki.1672-9250.2020.48.050http://dx.doi.org/10.14050/j.cnki.1672-9250.2020.48.050]
Wang Z H, Liu Y L, Ren Y H and Ma H J. 2019. Object-level double constrained method for land cover change detection. Sensors, 19(1): 79 [DOI: 10.3390/s19010079http://dx.doi.org/10.3390/s19010079]
Wang Z Y, Li H, Liu Z Z, Wu J M and Shi Z X. 2020. Satellite image change monitoring based on deep learning algorithm. Computer Systems and Applications, 29(1): 40-48
王志有, 李欢, 刘自增, 吴加敏, 施祖贤. 2020. 基于深度学习算法的卫星影像变化监测. 计算机系统应用, 29(1): 40-48 [DOI: 10.15888/j.cnki.csa.007233http://dx.doi.org/10.15888/j.cnki.csa.007233]
Wu B F,Zeng Y,Yan N N,Zeng H W,Zhao D and Zhang M. 2020. Remote sensing for ecosystem:Definition and prospects. Journal of Remote Sensing(Chinese),24(6):609-617
吴炳方,曾源,闫娜娜,曾红伟,赵旦,张淼.2020.生态系统遥感:内涵与挑战.遥感学报,24(6):609-617 [DOI:10.11834/jrs.20209247http://dx.doi.org/10.11834/jrs.20209247]
Xiao P F, Zhang X L, Wang D G, Yuan M, Feng X Z and Kelly M. 2016. Change detection of built-up land: A framework of combining pixel-based detection and object-based recognition. ISPRS Journal of Photogrammetry and Remote Sensing, 119: 402-414 [DOI: 10.1016/j.isprsjprs.2016.07.003http://dx.doi.org/10.1016/j.isprsjprs.2016.07.003]
Xing H Q, Chen J, Wu H, Zhang J, Li S N and Liu B Y. 2017. A service relation model for web-based land cover change detection. ISPRS Journal of Photogrammetry and Remote Sensing, 132: 20-32 [DOI: 10.1016/j.isprsjprs.2017.08.007http://dx.doi.org/10.1016/j.isprsjprs.2017.08.007]
Xu H Q. 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14): 3025-3033 [DOI: 10.1080/01431160600589179http://dx.doi.org/10.1080/01431160600589179]
Xu H Q. 2013a. A remote sensing index for assessment of regional ecological changes. China Environmental Science, 33(5): 889-897
徐涵秋. 2013a. 区域生态环境变化的遥感评价指数. 中国环境科学, 33(5): 889-897 [DOI: 10.3969/j.issn.1000-6923.2013.05.019http://dx.doi.org/10.3969/j.issn.1000-6923.2013.05.019]
Xu H Q. 2013b. Spatiotemporal dynamics of the bare soil cover in the Hetian basinal area of county Changting, China, during the past 35 years. Acta Ecologica Sinica, 33(10): 2945-2953
徐涵秋. 2013b. 福建省长汀县河田盆地区近35年来地表裸土变化的遥感时空分析. 生态学报, 33(10): 2945-2953 [DOI: 10.5846/stxb201204210575http://dx.doi.org/10.5846/stxb201204210575]
Zanetti M and Bruzzone L. 2008. A theoretical framework for change detection based on a compound multiclass statistical model of the difference image. IEEE Transactions on Geoscience and Remote Sensing, 56(2): 1129-1143 [DOI: 10.1109/TGRS.2017.2759663http://dx.doi.org/10.1109/TGRS.2017.2759663]
Zhan Z, Shi W Z and Zhang M. 2020. A land cover change detection and updating method for geographic national conditions monitoring. Journal of Geomatics, 45(3): 24-28
占昭, 史文中, 张敏. 2020. 一种面向地理国情监测的地表覆盖变化检测与更新方法. 测绘地理信息, 45(3): 24-28 [DOI: 10.14188/j.2095-6045.2018173http://dx.doi.org/10.14188/j.2095-6045.2018173]
Zhang Y, Zang S Y, Sun L, Yan B H, Yang T P, Yan W J, Meadows M E, Wang C Z and Qi J G. 2019. Characterizing the changing environment of cropland in the Songnen Plain, Northeast China, from 1990 to 2015. Journal of Geographical Sciences, 29(5): 658-674 [DOI: 10.1007/s11442-019-1620-3http://dx.doi.org/10.1007/s11442-019-1620-3]
Zhao Z, Xia W and Yan L. 2018. Land use change detection based on multi-source data. Remote Sensing for Land and Resources, 30(4): 148-155
赵展, 夏旺, 闫利. 2018. 基于多源数据的土地利用变化检测. 国土资源遥感, 30(4): 148-155 [DOI: 10.6046/gtzyyg.2018.04.22http://dx.doi.org/10.6046/gtzyyg.2018.04.22]
Zhou H H, Du J, Nan Y, Song K S, Zhao B Y and Xiang X Y. 2019. Landscape patterns of coastal wetlands in pearl river delta and their changes for 5 periods since 1980. Wetland Science, 17(5): 559-566
周昊昊, 杜嘉, 南颖, 宋开山, 赵博宇, 项小云. 2019. 1980年以来5个时期珠江三角洲滨海湿地景观格局及其变化特征. 湿地科学, 17(5): 559-566 [DOI: 10.13248/j.cnki.wetlandsci.2019.05.009http://dx.doi.org/10.13248/j.cnki.wetlandsci.2019.05.009]
Zhou T, Ma J J and Xu S J. 2020. Spatial patterns and spatial autocorrelations of wetland changes in China during 2003-2013. Environmental Science, 41(5): 2496-2504
周婷, 马姣娇, 徐颂军. 2020. 2003~2013年中国湿地变化的空间格局与关联性. 环境科学, 41(5): 2496-2504 [DOI: 10.13227/j.hjkx.202001005http://dx.doi.org/10.13227/j.hjkx.202001005]
Zhu L, La Y X, Shi R M and Peng S. 2019. Land cover spurious change detection using a geo-eco zoning rule base//Proceeding of 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan: IEEE: 6507-6510 [DOI: 10.1109/IGARSS.2019.8898124http://dx.doi.org/10.1109/IGARSS.2019.8898124]
Zhuang H F, Fan H D, Deng K Z and Yao G B. 2018. A spatial-temporal adaptive neighborhood-based ratio approach for change detection in SAR images. Remote Sensing, 10(8): 1295 [DOI: 10.3390/rs10081295http://dx.doi.org/10.3390/rs10081295]
相关作者
相关机构