A-Train卫星传感器的台风云体三维结构构建
Construction of a 3D structure of typhoon cloud based on an A-train satellite sensor
- 2022年26卷第11期 页码:2192-2203
纸质出版日期: 2022-11-07
DOI: 10.11834/jrs.20210154
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-11-07 ,
扫 描 看 全 文
程崇慧,陈斯婕,郑卓凡,董长哲,苏林,柯举,王帅博,仝博文,刘东.2022.A-Train卫星传感器的台风云体三维结构构建.遥感学报,26(11): 2192-2203
Cheng C H,Chen S J,Zheng Z F,Dong C Z,Su L,Ke J,Wang S B,Tong B W and Liu D. 2022. Construction of a 3D structure of typhoon cloud based on an A-train satellite sensor. National Remote Sensing Bulletin, 26(11):2192-2203
基于星载主‒被动传感器数据,本研究利用约束光谱辐射匹配CSRM(Constrained Spectral Radiance Matching)算法构建了8个西太平洋台风事件中的深对流云层三维结构模型,并据此分析深对流云在台风不同发展阶段中的水平分布特征和微物理特征。利用CSRM算法进行大气三维结构构建的意义在于将主动遥感的垂直分布信息向被动遥感的探测范围传递,增加统计分析8个台风事件可用的廓线数量,进一步保证对深对流云统计分析的有效性,统计分析结果表明:(1)衰弱期台风的深对流云占比(占所有种类云的比例)比增强期台风更低,并且其值在各个方向上更稳定。相比于台风,热带风暴中的深对流云占比在各个方向上差异更大,即不对称性更强;(2)热带气旋中深对流云的冰云有效粒子半径与高度成正比。随着高度增加,冰水粒子数浓度先增加后减少。同一热带气旋不同发展阶段的深对流云的冰水含量IWC(Ice Water Content)的垂直分布有着较大的差别。当热带气旋发展成台风时,其内部深对流云的IWC高值区逐渐向云层顶部集中,并且随着台风从增强期转化为衰弱期,IWC的最大值显著增大。
Based on the satellite-based active-passive sensor data
this study uses the Constrained Spectral Radiance Matching (CSRM) algorithm to construct 3D structural models of deep convective clouds in eight western Pacific typhoon events
and accordingly analyses the deep convective clouds in different stages of typhoon development in terms of The horizontal distribution characteristics and microphysical characteristics of deep convective clouds in different stages of typhoon development are analysed. The significance of using CSRM algorithm for atmospheric 3D structure construction is to transfer the vertical distribution information from active remote sensing to the detection range of passive remote sensing
increase the number of contours available for statistical analysis of the eight typhoon events
and further ensure the validity of statistical analysis of deep convective clouds. The results of statistical analysis show that: (1) The proportion of deep convective clouds in the enhanced typhoons studied in this paper is 61.4% on average
and the standard deviation along all directions is 12.4% on average. In comparison
the proportion and standard deviation of typhoons in the weakening period decreased
which were 25.3% and 8.4%
respectively. Compared with typhoons
the average proportion of deep convective clouds in tropical storms is 45.2%
and the difference is greater in different directions
with a standard deviation of 23.1%. (2) The ice cloud effective radius of deep convective clouds in tropical cyclones is proportional to the height. The ice water number concentration first increases and then decreases with the increase in height. The vertical distribution of Ice Water Content (IWC) of deep convective clouds at different development stages of the same tropical cyclone is quite different. When a tropical cyclone develops into a typhoon
the IWC high-value area of its deep convective clouds gradually concentrates toward the top of the cloud layer
and the maximum value of IWC significantly increases as the typhoon transforms from an intensified period to a weakened period.
台风事件星载主—被动数据融合深对流云三维结构微物理特性
typhoon eventdata fusiondeep convective cloudthree-dimensional structuremicrophysical properties
Barker H W, Jerg M P, Wehr T, Kato S, Donovan D P and Hogan R J. 2011. A 3D cloud-construction algorithm for the EarthCARE satellite mission. Quarterly Journal of the Royal Meteorological Society, 137(657): 1042-1058 [DOI: 10.1002/qj.824http://dx.doi.org/10.1002/qj.824]
Chen S J, Cheng C H, Zhang X Y, Su L, Tong B W, Dong C Z, Wang F, Chen B L, Chen W B and Liu D. 2020. Construction of nighttime cloud layer height and classification of cloud types. Remote Sensing, 12(4): 668-684 [DOI: 10.3390/rs12040668http://dx.doi.org/10.3390/rs12040668]
Cui L L, Chen Z, Yu X X, Chen G C, Wang X F, Lu Y W and Guo W. 2020. Deep learning estimation of tropical cyclone intensity along the southeast coast of China using FY-4A satellite. Journal of Remote Sensing, 24(7): 842-851
崔林丽, 陈昭, 于兴兴, 陈光琛, 王晓峰, 陆一闻, 郭巍. 2020. 风云四号卫星东南沿海热带气旋强度深度学习估算. 遥感学报, 24(7): 842-851 [DOI: 10.11834/jrs.20209124http://dx.doi.org/10.11834/jrs.20209124]
Durden S L, Tanelli S and Dobrowalski G. 2009. Cloudsat and a-train observations of tropical cyclones. The Open Atmospheric Science Journal, 3: 80-92 [DOI: 10.2174/1874282300903010080http://dx.doi.org/10.2174/1874282300903010080]
Forsythe J M, Haar T H V and Reinke D L. 2000. Cloud-base height estimates using a combination of meteorological satellite imagery and surface reports. Journal of Applied Meteorology and Climatology, 39(12): 2336-2347 [DOI: 10.1175/1520-0450(2000)039<2336:CBHEUA>2.0.CO;2http://dx.doi.org/10.1175/1520-0450(2000)039<2336:CBHEUA>2.0.CO;2]
Fu Y F, Liu D, Wang Y, Yu R C, Xu Y P and Cheng R. 2007. Characteristics of precipitating and non-precipitating clouds in typhoon ranan as viewed by TRMM combined measurements. Acta Meteorologica Sinica, 65(3): 316-328
傅云飞, 刘栋, 王雨, 宇如聪, 徐幼平, 程锐. 2007. 热带测雨卫星综合探测结果之“云娜”台风降水云与非降水云特征. 气象学报, 65(3): 316-328
Gao Y and Fang X. 2018. Analyses on vertical structure and microphysical features of typhoon cloud in Western Pacific based on cloudsat satellite data. Meteorological Monthly, 44(5): 597-611
高洋, 方翔. 2018. 基于CloudSat卫星分析西太平洋台风云系的垂直结构及其微物理特征. 气象, 44(5): 597-611 [DOI: 10.7519/j.issn.1000-0526.2018.05.001http://dx.doi.org/10.7519/j.issn.1000-0526.2018.05.001]
Han D, Yan W, Ye J and Liu H F. 2013. Analyzing cloud, precipitation, and thermal structure characteristics of typhoons in Eastern Pacific based on CloudSat satellite data. Chinese Journal of Atmospheric Sciences, 37(3): 691-704
韩丁, 严卫, 叶晶, 刘会发. 2013. 基于CloudSat卫星资料分析东太平洋台风的云、降水和热力结构特征. 大气科学, 37(3): 691-704 [DOI: 10.3878/j.issn.1006-9895.2012.12103http://dx.doi.org/10.3878/j.issn.1006-9895.2012.12103]
Joiner J, Vasilkov A P, Bhartia P K, Wind G and Menzel W P. 2010. Detection of multi-layer and vertically-extended clouds using A-train sensors. Atmospheric Measurement Techniques, 3(1): 233-247 [DOI: 10.5194/amt-3-233-2010http://dx.doi.org/10.5194/amt-3-233-2010]
Li H R and Sun X J 2014. Retrieving cloud base heights via the combination of CloudSat and MODIS observations//Proceedings of SPIE 9259, Remote Sensing of the Atmosphere, Clouds, and Precipitation V. Beijing: SPIE: 92591F [DOI: 10.1117/12.2067765http://dx.doi.org/10.1117/12.2067765]
Lu N M, Min M, Dong L X, Guo J P, Niu T, Liu H L, Bi Y M, Wang X, Chen L and Wu X B. 2016. Development and prospect of spaceborne LiDAR for atmospheric detection. Journal of Remote Sensing, 20(1):1-10
卢乃锰, 闵敏, 董立新, 郭建平, 牛涛, 刘洪利, 毕研盟, 王新, 陈林, 吴雪宝. 2016. 星载大气探测激光雷达发展与展望. 遥感学报, 20(01): 1-10 [DOI: 10.11834/jrs.20165050http://dx.doi.org/10.11834/jrs.20165050]
Miller S D, Forsythe J M, Partain P T, Haynes J M, Bankert R L, Sengupta M, Mitrescu C, Hawkins J D and Vonder Haar T H. 2014. Estimating three-dimensional cloud structure via statistically blended satellite observations. Journal of Applied Meteorology and Climatology, 53(2): 437-455 [DOI: 10.1175/JAMC-D-13-070.1http://dx.doi.org/10.1175/JAMC-D-13-070.1]
Platnick S, King M D, Ackerman S A, Menzel W P, Baum B A, Riedi J C and Frey R A. 2003. The MODIS cloud products: algorithms and examples from Terra. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 459-473 [DOI: 10.1109/TGRS.2002.808301http://dx.doi.org/10.1109/TGRS.2002.808301]
Sassen K, Wang Z E and Liu D. 2008. Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. Journal of Geophysical Research, 113(D8): D00A12 [DOI: 10.1029/2008jd009972http://dx.doi.org/10.1029/2008jd009972]
Savtchenko A, Kummerer R, Smith P, Gopalan A, Kempler S and Leptoukh G. 2008. A-train data depot: bringing atmospheric measurements together. IEEE Transactions on Geoscience and Remote Sensing, 46(10): 2788-2795 [DOI: 10.1109/TGRS.2008.917600http://dx.doi.org/10.1109/TGRS.2008.917600]
Sherwood S C, Horinouchi T and Zeleznik H A. 2003. Convective impact on temperatures observed near the tropical tropopause. Journal of the Atmospheric Sciences, 60(15): 1847-1856 [DOI: 10.1175/1520-0469(2003)060<1847:CIOTON>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(2003)060<1847:CIOTON>2.0.CO;2]
Sun X J, Li H R, Barker H W, Zhang R W, Zhou Y B and Liu L. 2016. Satellite-based estimation of cloud-base heights using constrained spectral radiance matching. Quarterly Journal of the Royal Meteorological Society, 142(694): 224-232 [DOI: 10.1002/qj.2647http://dx.doi.org/10.1002/qj.2647]
Wang Y and Wu C C. 2004. Current understanding of tropical cyclone structure and intensity changes—a review. Meteorology and Atmospheric Physics, 87(4): 257-278 [DOI: 10.1007/s00703-003-0055-6http://dx.doi.org/10.1007/s00703-003-0055-6]
Winker D M, Vaughan M A, Omar A, Hu Y X, Powell K A, Liu Z Y, Hunt W H and Young S A. 2009. Overview of the CALIPSO mission and CALIOP data processing algorithms. Journal of Atmospheric and Oceanic Technology, 26(11): 2310-2323 [DOI: 10.1175/2009JTECHA1281.1http://dx.doi.org/10.1175/2009JTECHA1281.1]
Zhou Z H, Bai J, Liu J W, Ji F, Qi L L and Li W. 2005. The application of cloud phase recognition by MODIS spectral data. Journal of Applied Meteorological Science, 16(5): 678-684
周著华, 白洁, 刘健文, 纪飞, 齐琳琳, 李玮. 2005. MODIS多光谱云相态识别技术的应用研究. 应用气象学报, 16(5): 678-684 [DOI: 10.3969/j.issn.1001-7313.2005.05.015http://dx.doi.org/10.3969/j.issn.1001-7313.2005.05.015]
相关文章
相关作者
相关机构