面向中国深空探测任务的行星数据系统的设计与实现
Design and implementation of a planetary data system for Chinese deep space exploration
- 2021年25卷第2期 页码:599-613
纸质出版日期: 2021-02-07
DOI: 10.11834/jrs.20210157
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-02-07 ,
扫 描 看 全 文
李晨帆,姚佩雯,刘翔,陈冰玉,邹鸿博,王彪,张江,李勃,凌宗成,陈圣波.2021.面向中国深空探测任务的行星数据系统的设计与实现.遥感学报,25(2): 599-613
Li C F,Yao P W,Liu X,Chen B Y,ZOU H B,Wang B,Zhang J,Li B,Ling Z C and Chen S B. 2021. Design and implementation of a planetary data system for Chinese deep space exploration. National Remote Sensing Bulletin, 25(2):599-613
行星数据系统是归档和发布深空探测任务获得数据的在线平台,也是开展行星学科研究的基础。不同的深空探测任务,包括中国的“嫦娥计划”和“天问系列”,都存在数据格式转换复杂、数据处理不便、专业性强等缺点,使其难以面向公众。为了有效管理、存档和分析这些数据并发挥其应用潜力,本文基于WebGIS三层分布结构,采用面向对象的时空数据模型,设计并开发了山东大学威海行星数据系统(SDU-PDS)。该系统分为网页版和移动版两个版本。网页版是一个能有效存储、管理、分析和发布中国深空探测数据的在线系统;移动版则是一个集行星数据浏览、叠加和探测任务三维可视化于一体的行星可视化系统。SDU-PDS不仅能为科研工作人员提供数据服务和分析功能,还具有为大众普及行星科学知识和提高公众基本科学素养的科普功能。通过对SDU-PDS基本功能进行组合和优化,该系统实现了行星数据融合和挖掘等关键技术,开展了月球地质图绘制和“嫦娥四号”安全着陆区预选等科学任务和研究,从而服务于中国后续的深空探测任务。
The Planetary Data System (PDS) is an online platform where deep space mission data can be archived and released
and it is used as the basis for planetary research. Different deep space exploration missions
including Chinese “Chang ’E project” and the upcoming “Tianwen series
” have disadvantages such as complex data format conversion
inconvenient data processing
and strong professionalism; these issues hinder their application. A planetary data system (named SDU-PDS) is designed and developed in this study to manage and find the aforementioned data. Meanwhile
we attempt to design a data model to archive these planetary data in SDU-PDS.On the basis of the three-layer distribution structure of WebGIS and the object-oriented spatiotemporal data model
SDU-PDS is developed. Specifically
this system is divided into two versions: website or mobile devices. One is an online system
called “web version
” which is based on Web Graphics Library and developed by JavaScript. The other one
called mobile version
is developed on Android system through Unity3D platform. In addition
planetary data standard in this system uses Keyhole Markup Language
and the object-oriented spatiotemporal model is consistent with PDS4.
Three layers of architecture
namely
data
intermediate application
and customer layers
are present in SDU-PDS. Different versions have different data transfer processes and functions in spite of same architecture. The web version can effectively store
publish
manage
and even analyze Chinese deep space exploration data. It provides a convenient data management and processing platform for researchers. The mobile version is for the general public and astrophile that integrates planetary data browsing
stacking
and 3D visualization.
In this study
we made two further attempts in planetary data processing on the basis of functions on SDU-PDS website. The lunar geological map is the first attempt and is mapped out after some sophisticated steps. Various jobs
such as inversing planetary composition
devising geological unit
extracting structural objects
dating lunar basalt unit
stacking layers
and fusing information
are all indispensable. Consequently
exploring a large amount of information in this geological map
such as the lithofacies
lithology
geological structure and ages
and magmatic activity
is possible. Meanwhile
another attempt is to estimate the lunar surficial safety. We can understand the surficial relief on a smaller scale
such as meter scale
through remote sensing images. Then
factors such as terrain and distance are integrated to estimate the safety of the Chang ’E-4 landing zone and even design the rover’s path.
Clearly
SDU-PDS not only can provide data services and analysis functions for scientific researchers but also can popularize knowledge of planetary science to the public to improve basic scientific literacy of citizens. By combining and optimizing the basic functions of SDU-PDS
we realize the mining and fusion of planetary data. In general
the system can meet the application requirements of Chinese deep space exploration missions to a certain extent by conducting scientific studies such as lunar geological mapping and pre-selection of “Chang ’E-4” safe landing areas. However
this planetary data system should be continuously developed and perfected
and the interactivity between two versions should be enhanced to explore the potential of planetary data further.
遥感行星数据系统山东大学威海行星数据系统WebGIS数据融合数据挖掘
remote sensingPlanetary Data SystemSDU-PDSWebGISdata fusiondata mining
Araki H, Tazawa S, Noda H, Ishihara Y, Goossens S, Sasaki S, Kawano N, Kamiya I, Otake H, Oberst J and Shum C. 2009. Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry. Science, 323(5916): 897-900 [DOI: 10.1126/science.11 64146http://dx.doi.org/10.1126/science.1164146]
Besse S, Vallat C, Barthelemy M, Coia D, Costa M, De Marchi G, Fraga D, Grotheer E, Heather D, Lim T, Martinez S, Arviset C, Barbarisi I, Docasal R, Macfarlane A, Rios C, Saiz J and Vallejo F. 2018. ESA’s Planetary Science Archive: preserve and present reliable scientific data sets. Planetary and Space Science, 150: 131-140 [DOI: 10.1016/j.pss.2017.07.013http://dx.doi.org/10.1016/j.pss.2017.07.013]
Cao Z Y and Liu Y. 2002. An object-oriented spatio-temporal data model. Acta Geodaetica et Cartographica Sinica, 31(1): 87-92
曹志月, 刘岳. 2002. 一种面向对象的时空数据模型. 测绘学报, 31(1): 87-92 [DOI: 10.3321/j.issn:1001-1595.2002.01.017http://dx.doi.org/10.3321/j.issn:1001-1595.2002.01.017]
Crichton D, Hughes J S, Hardman S, Law E, Beebe R, Morgan T and Grayzeck E. 2014. A scalable planetary science information architecture for big science data//2014 IEEE 10th International Conference on e-Science. Sao Paulo, Brazil: IEEE: 196-203 [DOI: 10.1109/eScience.2014.38http://dx.doi.org/10.1109/eScience.2014.38]
Di K C, Liu B, Liu Z Q and Zou Y L. 2016. Review and prospect of lunar mapping using remote sensing data. Journal of Remote Sensing, 20(5): 1230-1242
邸凯昌, 刘斌, 刘召芹, 邹永廖. 2016. 月球遥感制图回顾与展望. 遥感学报, 20(5): 1230-1242 [DOI: 10.11834/jrs.20166158http://dx.doi.org/10.11834/jrs.20166158]
Figuera R M, Huu B P, Rossi A P, Minin M, Flahaut J and Halder A. 2018. Online characterization of planetary surfaces: PlanetServer, an open-source analysis and visualization tool. Planetary and Space Science, 150: 141-156 [DOI: 10.1016/j.pss.2017.09.007http://dx.doi.org/10.1016/j.pss.2017.09.007]
Hughes J S, Crichton D, Hardman S, Law E, Joyner R S and Ramirez P. 2014. PDS4: a model-driven planetary science data architecture for long-term preservation//2014 IEEE 30th International Conference on Data Engineering Workshops. Chicago, IL, USA: IEEE: 134-141 [DOI: 10.1109/ICDEW.2014.6818317http://dx.doi.org/10.1109/ICDEW.2014.6818317]
Lee A and Jang I. 2019. Implementation of an open platform for 3D spatial information based on WebGL. ETRI Journal, 41(3): 277-288 [DOI: 10.4218/etrij.2018-0352http://dx.doi.org/10.4218/etrij.2018-0352]
Li B. 2013. Study and Development of Virtual-Reality and 3D-Visualization Ocean Engine. Qingdao: Ocean University of China
李勃. 2013. 虚拟海洋与三维可视化仿真引擎的研究与开发. 青岛: 中国海洋大学
Li B, Chen G, Tian F L, Shao B M and Ji P B. 2014. GPU accelerated marine data visualization method. Journal of Ocean University of China, 13(6): 964-970 [DOI: 10.1007/s11802-014-2304-3http://dx.doi.org/10.1007/s11802-014-2304-3]
Li B, Ling Z C, Zhang J, Chen J, Sun L Z and Zhao H W. 2014. Geochronology, petrogenesis and geological significance of the lunar basalts around CE-3 landing site. Acta Petrologica Sinica, 32(1): 19-28
李勃, 凌宗成, 张江, 陈剑, 孙灵芝, 赵昊炜. 2014. “嫦娥三号”着陆区月海玄武岩的年龄、成因及地质意义. 岩石学报, 32(1): 19-28
Li B, Ling Z C, Zhang J and Wu Z C. 2015. Automatic detection and boundary extraction of lunar craters based on LOLA DEM data. Earth, Moon, and Planets, 115(1): 59-69 [DOI: 10.1007/s11038-015-9467-9http://dx.doi.org/10.1007/s11038-015-9467-9]
Li B, Yue Z Y, Zhang J, Fu X H, Ling Z C, Chen S B, Chen J and Yao P W. 2019. High-resolution terrain analysis for lander safety landing and rover path planning based on lunar reconnaissance orbiter narrow angle camera images: a case study of China’s Chang’e-4 probe. Earth and Space Science, 6(3): 398-410 [DOI: 10.1029/20 18ea000507http://dx.doi.org/10.1029/2018ea000507]
Lin Y, Chen J, Liu Y and Wang Y T. 2015. User experience design of VR-AR hybrid mobile browsing system based on mental model. Chinese Journal of Computers, 38(2): 408-422
林一, 陈靖, 刘越, 王涌天. 2015. 基于心智模型的虚拟现实与增强现实混合式移动导览系统的用户体验设计. 计算机学报, 38(2): 408-422 [DOI: 10.3724/SP.J.1016.2015.00408http://dx.doi.org/10.3724/SP.J.1016.2015.00408]
Ling Z C, Zhang J, Wu Z C, Sun L Z and Liu J Z. 2013. The compositional distribution and rock types of the Aristarchus region on the Moon. Scientia Sinica-Physica, Mechanica and Astronomica, 43(11): 1403-1410
凌宗成, 张江, 武中臣, 孙灵芝, 刘建忠. 2013. 月球Aristarchus地区的物质成分与岩石类型分布. 中国科学: 物理学 力学 天文学, 43(11): 1403-1410 [DOI: 10.1360/132013-320http://dx.doi.org/10.1360/132013-320]
Ling Z C, Liu J Z, Zhang J, Li B, Wu Z C, Ni Y H and Sun L Z. 2014. The lunar rock types as determined by Chang’E-1 IIM data: a case study of Mare Imbrium-Mare Frigoris Region (LQ-4). Earth Science Frontiers, 21(6): 107-120
凌宗成, 刘建忠, 张江, 李勃, 武中臣, 倪宇恒, 孙灵芝. 2014. 基于“嫦娥一号”干涉成像光谱仪数据的月球岩石类型填图: 以月球雨海—冷海地区(LQ-4)为例. 地学前缘, 21(6): 107-120 [DOI: 10.13745/J.ESF.2014.06.012http://dx.doi.org/10.13745/J.ESF.2014.06.012]
Ling Z C, Zhang J, Liu J Z, Li B, Wu Z C, Ni Y H, Sun L Z and Chen J. 2016. Lunar global FeO and TiO2 mapping based on the recalibrated Chang’E-1IIM dataset. Acta Petrologica Sinica, 32(1): 87-98
凌宗成, 张江, 刘建忠, 李勃, 武中臣, 倪宇恒, 孙灵芝, 陈剑. 2016. 嫦娥一号干涉成像光谱仪数据再校正与全月铁钛元素反演. 岩石学报, 32(1): 87-98
Lucey P G, Blewett D T and Jolliff B L. 2000. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. Journal of Geophysical Research, 105(E8): 20297-20305
Macfarlane A J, Docasal R, Rios C, Barbarisi I, Saiz J, Vallejo F, Besse S, Arviset C, Barthelemy M, De Marchi G, Fraga D, Grotheer E, Heather D, Lim T, Martinez S and Vallat C. 2018. Improving accessibility and discovery of ESA planetary data through the new planetary science archive. Planetary and Space Science, 150: 104-110 [DOI: 10.1016/j.pss.2017.07.003http://dx.doi.org/10.1016/j.pss.2017.07.003]
Neukum G, Ivanov B A and Hartmann W K. 2001. Cratering records in the inner solar system in relation to the lunar reference system. Space Science Reviews, 96: 55-86 [DOI: 10.1023/A:101198900 4263http://dx.doi.org/10.1023/A:1011989004263]
Ouyang Z Y, Li C L, Zou Y L, Liu J Z and Xu L. 2002. Progress of deep space exploration and Chinese deep space exploration strategy. Aerospace China, (12): 28-32
欧阳自远, 李春来, 邹永廖, 刘建忠, 徐琳. 2002. 深空探测的进展与我国深空探测的发展战略. 中国航天, (12): 28-32
Ouyang Z Y and Liu J Z. 2014. The origin and evolution of the Moon and its geological mapping. Earth Science Frontiers, 21(6): 1-6
欧阳自远, 刘建忠. 2014. 月球形成演化与月球地质图编研. 地学前缘, 21(6): 1-6 [DOI: 10.13745/j.esf.2014.06.001http://dx.doi.org/10.13745/j.esf.2014.06.001]
Poulet F, Quantin-Nataf C, Ballans H, Dassas K, Audouard J, Carter J, Gondet B, Lozac’h L, Malapert J C, Marmo C, Riu L and Séjourné A. 2018. PSUP: a planetary surface portal. Planetary and Space Science, 150: 2-8 [DOI: 10.1016/j.pss.2017.01.016http://dx.doi.org/10.1016/j.pss.2017.01.016]
Qian W N, Wei L, Wang Y, Qian H L and Zhou A Y. 2002. A data mining system for very large databases. Journal of Software, 13(8): 1540-1545
钱卫宁, 魏藜, 王焱, 钱海蕾, 周傲英. 2002. 一个面向大规模数据库的数据挖掘系统. 软件学报, 13(8): 1540-1545
Quantin-Nataf C, Lozac’h L, Thollot P, Loizeau D, Bultel B, Fernando J, Allemand P, Dubuffet F, Poulet F, Ody A, Clenet H, Leyrat C and Harrisson S. 2018. MarsSI: martian surface data processing information system. Planetary Space Science, 150: 157-170 [DOI: 10.1016/j.pss.2017.09.014http://dx.doi.org/10.1016/j.pss.2017.09.014]
Yang H W, Zhao W J and Wu Z H. 2015. Research on planetary data system and application. Acta Geologica Sinica, 89(12): 2419-2432
杨宏伟, 赵文津, 吴珍汉. 2015. PDS行星数据系统研究及其应用. 地质学报, 89(12): 2419-2432 [DOI: 10.3969/j.issn.0001-5717.2015.12.016http://dx.doi.org/10.3969/j.issn.0001-5717.2015.12.016]
Zhang P L and Shen H F. 2016. Progress and future of remote sensing data fusion. Journal of Remote Sensing, 20(5): 1050-1061
张良培, 沈焕锋. 2016. 遥感数据融合的进展与前瞻. 遥感学报, 20(5): 1050-1061 [DOI: 10.11834/jrs.20166243http://dx.doi.org/10.11834/jrs.20166243]
Zheng Y, Zou Z M, Tong J Z and Ma W Z. 2009. Research on the planetary data system (PDS). E-Science Technology and Application, (1): 42-49
郑岩, 邹自明, 佟继周, 马文臻. 2009. 行星科学数据系统(PDS)标准规范的研究. 科研信息化技术与应用, (1): 42-49
Zhu L F, Wang X F and Pan X. 2014. Moving KML geometry elements within Google Earth. Computers and Geosciences, 72: 176-183 [DOI: 10.1016/j.cageo.2014.07.016http://dx.doi.org/10.1016/j.cageo.2014.07.016]
相关作者
相关机构