MODIS NDSI产品去云算法及最优阈值选择研究
Cloud removal and optimal threshold selection of MODIS NDSI production
- 2022年26卷第12期 页码:2603-2615
纸质出版日期: 2022-12-07
DOI: 10.11834/jrs.20210169
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-12-07 ,
扫 描 看 全 文
王晓艳,陈思勇,郭慧,谢佩瑶,王建,郝晓华.2022.MODIS NDSI产品去云算法及最优阈值选择研究.遥感学报,26(12): 2603-2615
Wang X Y,Chen S Y,Guo H,Xie P Y,Wang J and Hao X H. 2022. Cloud removal and optimal threshold selection of MODIS NDSI production. National Remote Sensing Bulletin, 26(12):2603-2615
归一化差值积雪指数NDSI(Normalized Difference Snow Index)是积雪识别中最常用的指数,但由于云的遮挡限制了MODIS NDSI产品的应用。本文提出了一种基于邻近相似像元的MODIS NDSI产品去云方法,并分析了无云NDSI序列在积雪识别中的最优阈值。对于NDSI影像上某一个云遮挡的目标像元,选取目标像元的n个邻近相似像元进行加权平均来预测该目标像元的NDSI值。以东北积雪区2017年10月1日—2018年4月31日一个积雪季的NDSI产品进行去云实验,并采用“云假设”的方法进行了检验,所预测到的云覆盖像元NDSI值与实际值的相关系数达到0.95,均方根误差为0.08。将逐日无云NDSI序列与气象站点测量的雪深序列进行对比,二者具有很好的一致性。气象站点的测量雪深大于等于1 cm时,假定该站点所在的像元为有雪像元,并以此为真值,分析无云NDSI序列在积雪识别中的最优阈值。结果表明,非森林地区NDSI阈值为0.1时积雪提取的精度最高,可以达到95.6%;森林地区的NDSI最优阈值为0,对应的积雪提取精度为93.5%。
The normalized difference snow index (NDSI) is the most commonly used index in snow identification. However
the application of MODIS NDSI products is restricted due to cloud occlusion. This study aims to produce daily cloud-free MODIS NDSI production with high accuracy and determine the optimal NDSI threshold in snow identification.
In this work
a cloud removal method based on adjacent similar pixels is presented for MODIS NDSI products. First
MOD10A1 and MYD10A1 on the same day are combined. The rule is that MOD10A1 is updated by MYD10A1 at the same location when MOD10A1 is marked by clouds. However
MYD10A1 is cloud-free. Second
an adjacent temporal composite is created. The mean of the nearest valid NDSI values for the adjacent 2 days to that location was assigned to a cloudy pixel. Finally
the residual cloud pixels are processed based on the removed adjacent similar pixels. A weighted cloud-free similar pixel function is established to predict the cloudy target pixel on the NDSI image. The first
n
similar pixels in the
w
by
w
local window are selected
and a weighting function can be constructed to compute the NDSI value for the target pixel. In this study
n
=20 and
w
=15 are recommended in practice. The cloud removal experiment is carried out with the MODIS NDSI products in the northeast China from October 1
2017 to April 31
2018. The optimal NDSI threshold of snow identification is then determined based on the Snow Depth (SD) data of the meteorological stations.
The effectiveness of cloud removal was validated through “cloud assumption”. Results showed that the correlation coefficient r between the predicted NDSI value and the true value is 0.95
and the root mean square error is 0.08. The daily cloud free NDSI sequence has good agreement with the SD sequence measured by the meteorological stations. When the measured SD of a meteorological station is greater than or equal to 1 cm
the pixel where the station is located is a snow pixel; otherwise
the pixel is snow free. Accordingly
the true value of the binary snow distribution can be obtained according to the SD measured by meteorological station. Thereafter
the true value is used to analyze the optimal threshold of cloud free NDSI sequence in snow identification. The results show that the accuracy of snow identification is the highest when the NDSI threshold is 0.1 in non-forest areas
which can reach 95.6%; the optimal threshold of NDSI in forest areas is 0
and the corresponding snow identification accuracy is 93.5%.
(1) The cloud removal method based on adjacent similar pixels is effective for the generation of daily cloud free MODIS NDSI products. (2) The daily cloud free NDSI sequence has good agreement with the SD sequence measured by the meteorological stations. (3) The optimal threshold of the cloud free NDSI sequence in snow identification is 0.1 in non-forest areas and 0 in forest areas.
遥感积雪去云MODISNDSI中国东北森林
remote sensingsnowcloud removalMODISNDSINortheast Chinaforest
Ault T W, Czajkowski K P, Benko T, Coss J, Struble J, Spongberg A, Templin M and Gross C. 2006. Validation of the MODIS snow product and cloud mask using student and NWS cooperative station observations in the Lower Great Lakes Region. Remote Sensing of Environment, 105(4): 341-353 [DOI: 10.1016/j.rse.2006.07.004http://dx.doi.org/10.1016/j.rse.2006.07.004]
Barnett T P, Adam J C and Lettenmaier D P. 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438(7066): 303-309 [DOI: 10.1038/nature04141http://dx.doi.org/10.1038/nature04141]
Cao Y G, Yang X C, Xu B and Zhu X H. 2007. Applications and limitations of a snow mapping algorithm based on MODIS data in Qinghai-Tibet Plateau. Science and Technology Review, 25(21): 51-54
曹云刚, 杨秀春, 徐斌, 朱晓华. 2002. MODIS在青藏高原大范围积雪制图中的应用及存在的问题. 科技导报, 25(21): 51-54 [DOI: 10.3321/j.issn:1000-7857.2007.21.012http://dx.doi.org/10.3321/j.issn:1000-7857.2007.21.012]
Che T, Dai L Y, Zheng X M, Li X F and Zhao K. 2016. Estimation of snow depth from passive microwave brightness temperature data in forest regions of Northeast China. Remote Sensing of Environment, 183: 334-349 [DOI: 10.1016/j.rse.2016.06.005http://dx.doi.org/10.1016/j.rse.2016.06.005]
Che T and Li X. 2005. Spatial distribution and temporal variation of snow water resources in China during 1993—2002. Journal of Glaciology and Geocryology, 27(1): 64-67
车涛, 李新. 2005. 1993—2002年中国积雪水资源时空分布与变化特征. 冰川冻土, 27(1): 64-67 [DOI: 10.3969/j.issn.1000-0240.2005.01.009http://dx.doi.org/10.3969/j.issn.1000-0240.2005.01.009]
Chen X N, Long D, Liang S L, He L, Zeng C, Hao X H and Hong Y. 2018. Developing a composite daily snow cover extent record over the Tibetan Plateau from 1981 to 2016 using multisource data. Remote Sensing of Environment, 215: 284-299 [DOI: 10.1016/j.res.2018.06.021http://dx.doi.org/10.1016/j.res.2018.06.021]
Cheng Q, Liu H Q, Shen H F, Wu P H and Zhang L P. 2017. A spatial and temporal nonlocal filter-based data fusion method. IEEE Transactions on Geoscience and Remote Sensing, 55(8): 4476-4488 [DOI: 10.1109/TGRS.2017.2692802http://dx.doi.org/10.1109/TGRS.2017.2692802]
Choi G, Robinson D A and Kang S. 2010. Changing Northern Hemisphere snow seasons. Journal of Climate, 23(19): 5305-5310 [DOI: 10.1175/2010JCLI3644.1http://dx.doi.org/10.1175/2010JCLI3644.1]
Da Ronco P and De Michele C. 2014. Cloud obstruction and snow cover in Alpine areas from MODIS products. Hydrology and Earth System Sciences, 18(11): 4579-4600 [DOI: 10.5194/hess-18-4579-2014http://dx.doi.org/10.5194/hess-18-4579-2014]
Deng J, Huang X D, Feng Q S, Ma X F and Liang T G. 2015. Toward improved daily cloud-free fractional snow cover mapping with multi-source remote sensing data in China. Remote Sensing, 7(6): 6986-7006 [DOI: 10.3390/rs70606986http://dx.doi.org/10.3390/rs70606986]
Dong C Y and Menzel L. 2016. Producing cloud-free MODIS snow cover products with conditional probability interpolation and meteorological data. Remote Sensing of Environment, 186: 439-451 [DOI: 10.1016/j.rse.2016.09.019http://dx.doi.org/10.1016/j.rse.2016.09.019]
Dozier J, Painter T H, Rittger K and Frew J E. 2008. Time-space continuity of daily maps of fractional snow cover and albedo from MODIS. Advances in Water Resources, 31(11): 1515-1526 [DOI: 10.1016/j.advwatres.2008.08.011http://dx.doi.org/10.1016/j.advwatres.2008.08.011]
Frei A, Tedesco M, Lee S, Foster J, Hall D K, Kelly R and Robinson D A. 2012. A review of global satellite-derived snow products. Advances in Space Research, 50(8): 1007-1029 [DOI: 10.1016/j.asr.2011.12.021http://dx.doi.org/10.1016/j.asr.2011.12.021]
Gafurov A, Vorogushyn S, Farinotti D, Duethmann D, Merkushkin A and Merz B. 2015. Snow-cover reconstruction methodology for mountainous regions based on historic in situ observations and recent remote sensing data. The Cryosphere, 9(2): 451-463 [DOI: 10.5194/tc-9-451-2015http://dx.doi.org/10.5194/tc-9-451-2015]
Gao Y, Xie H J, Yao T D and Xue C S. 2010. Integrated assessment on multi-temporal and multi-sensor combinations for reducing cloud obscuration of MODIS snow cover products of the Pacific Northwest USA. Remote Sensing of Environment, 114(8): 1662-1675 [DOI: 10.1016/j.rse.2010.02.017http://dx.doi.org/10.1016/j.rse.2010.02.017]
Gladkova I, Grossberg M, Bonev G, Romanov P and Shahriar F. 2012. Increasing the accuracy of MODIS/Aqua snow product using quantitative image restoration technique. IEEE Geoscience and Remote Sensing Letters, 9(4): 740-743 [DOI: 10.1109/LGRS.2011.2180505http://dx.doi.org/10.1109/LGRS.2011.2180505]
Hall D K, Riggs G A, Salomonson V V, DiGirolamo N E and Bayr K J. 2002. MODIS snow-cover products. Remote Sensing of Environment, 83(1/2): 181-194 [DOI: 10.1016/S0034-4257(02)00095-0http://dx.doi.org/10.1016/S0034-4257(02)00095-0]
Hall D K and Riggs G A. 2007. Accuracy assessment of the MODIS snow products. Hydrological Processes, 21(12): 1534-1547 [DOI: 10.102/hyp.6715http://dx.doi.org/10.102/hyp.6715]
Hall D K, Riggs G A, Foster J L and Kumar S V. 2010. Development and evaluation of a cloud-gap-filled MODIS daily snow-cover product. Remote Sensing of Environment, 114(3): 496-503 [DOI: 10.1016/j.rse.2009.10.007http://dx.doi.org/10.1016/j.rse.2009.10.007]
Hao X H, Wang J and Li H Y. 2008. Evaluation of the NDSI threshold value in mapping snow cover of MODIS-A case study of snow in the Middle Qilian Mountains. Journal of Glaciology and Geocryology, 30(1): 132-138
郝晓华, 王建, 李弘毅. 2008. MODIS雪盖制图中NDSI阈值的检验——以祁连山中部山区为例. 冰川冻土, 30(1): 132-138
Hou J L, Huang C L, Zhang Y, Guo J F and Gu J. 2019. Gap-filling of MODIS fractional snow cover products via non-local spatio-temporal filtering based on machine learning techniques. Remote Sensing, 11(1): 90 [DOI: 10.3390/rs11010090http://dx.doi.org/10.3390/rs11010090]
Huang X D, Deng J, Ma X F, Wang Y L, Feng Q S, Hao X H and Liang T G. 2016. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China. The Cryosphere, 10(5): 2453-2463 [DOI: 10.5194/tc-10-2453-2016http://dx.doi.org/10.5194/tc-10-2453-2016]
Huang X D, Deng J, Wang W, Feng Q S and Liang T G. 2017. Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau. Remote Sensing of Environment, 190: 274-288 [DOI: 10.1016/j.rse.2016.12.028http://dx.doi.org/10.1016/j.rse.2016.12.028]
Huang X D, Liang T G, Zhang X T and Guo Z G. 2011. Validation of MODIS snow cover products using Landsat and ground measurements during the 2001-2005 snow seasons over northern Xinjiang, China. International Journal of Remote Sensing, 32(1): 133-152 [DOI: 10.1080/01431160903439924http://dx.doi.org/10.1080/01431160903439924]
Huang X D, Zhang X T, Li X and Liang T G. 2007. Accuracy analysis for MODIS snow products of MOD10A1 and MOD10A2 in Northern Xinjiang Area. Journal of Glaciology and Geocryology, 29(5): 722-729
黄晓东, 张学通, 李霞, 梁天刚. 2007. 北疆牧区MODIS积雪产品MOD10A1和MOD10A2的精度分析与评价. 冰川冻土, 29(5): 722-729 [DOI: 10.3969/j.issn.1000-0240.2007.05.008http://dx.doi.org/10.3969/j.issn.1000-0240.2007.05.008]
Huang Y, Liu H X, Yu B L, Wu J P, Kang E L, Xu M, Wang S J, Klein A and Chen Y N. 2018. Improving MODIS snow products with a HMRF-based spatio-temporal modeling technique in the Upper Rio Grande Basin. Remote Sensing of Environment, 204: 568-582 [DOI: 10.1010/j.res.2017.10.001http://dx.doi.org/10.1010/j.res.2017.10.001]
Jing Y H, Shen H F, Li X H and Guan X B. 2019. A two-stage fusion framework to generate a spatio-temporally continuous MODIS NDSI product over the Tibetan Plateau. Remote Sensing, 11(19): 2261 [DOI: 10.3390/rs11192261http://dx.doi.org/10.3390/rs11192261]
Klein A G and Barnett A C. 2003. Validation of daily MODIS snow cover maps of the Upper Rio Grande River Basin for the 2000-2001 snow year. Remote Sensing of Environment, 86(2): 162-176 [DOI: 10.1016/S0034-4257(03)00097-Xhttp://dx.doi.org/10.1016/S0034-4257(03)00097-X]
Li X H, Fu W X, Shen H F, Huang C L and Zhang L P. 2017. Monitoring snow cover variability (2000-2014) in the Hengduan Mountains based on cloud-removed MODIS products with an adaptive spatio-temporal weighted method. Journal of Hydrology, 551: 314-327 [DOI: 10.1016/j.jhydrol.2017.05.049http://dx.doi.org/10.1016/j.jhydrol.2017.05.049]
Li X H, Jing Y H, Shen H F and Zhang L P. 2019a. The recent developments in cloud removal approaches of MODIS snow cover product. Hydrology and Earth System Sciences, 23(5): 2401-2416 [DOI: 10.5194/hess-23-2401-2019http://dx.doi.org/10.5194/hess-23-2401-2019]
Li Y, Chen Y and Li Z. 2019b. Developing daily cloud-free snow composite products from MODIS and IMS for the Tienshan Mountains. Earth and Space Science, 6(2): 266-275 [DOI: 10.1029/2018EA000460http://dx.doi.org/10.1029/2018EA000460]
Liang T G, Zhang X T, Xie H J, Wu C X, Feng Q S, Huang X D and Chen Q G. 2008. Toward improved daily snow cover mapping with advanced combination of MODIS and AMSR-E measurements. Remote Sensing of Environment, 112(10): 3750-3761 [DOI: 10.1016/j.rse.2008.05.010http://dx.doi.org/10.1016/j.rse.2008.05.010]
Liu M, Yang W, Zhu X L, Chen J, Chen X H, Yang L Q and Helmer E H. 2019. An Improved Flexible Spatiotemporal DAta Fusion (IFSDAF) method for producing high spatiotemporal resolution normalized difference vegetation index time series. Remote Sensing of Environment, 227: 74-89 [DOI: 10.1016/j.rse.2019.03.012http://dx.doi.org/10.1016/j.rse.2019.03.012]
Parajka J and Blöschl G. 2006. Validation of MODIS snow cover images over Austria. Hydrology and Earth System Sciences, 10(5): 679-689 [DOI: 10.5194/hess-10-679-2006http://dx.doi.org/10.5194/hess-10-679-2006]
Parajka J and Blöschl G. 2008. Spatio-temporal combination of MODIS images-potential for snow cover mapping. Water Resources Research, 44(3): W03406 [DOI: 10.1029/2007WR006204http://dx.doi.org/10.1029/2007WR006204]
Qin D H, Chen Z L, Luo Y, Ding Y H, Dai X S, Ren J W, Zhai P M, Zhang X Y, Zhao Z C, Zhang D E, Gao X J and Shen Y P. 2007. Updated understanding of climate change sciences. Advances in Climate Change Research, 3(2): 63-73
秦大河, 陈振林, 罗勇, 丁一汇, 戴晓苏, 任贾文, 翟盘茂, 张小曳, 赵宗慈, 张德二, 高学杰, 沈永平. 2007. 气候变化科学的最新认知. 气候变化研究进展, 3(2): 63-73 [DOI: 10.3969/j.issn.1673-1719.2007.02.001http://dx.doi.org/10.3969/j.issn.1673-1719.2007.02.001]
Qiu Y B, Zhang H, Chu D, Zhang X C, Yu X Q and Zheng Z J. 2017. Cloud removing algorithm for the daily cloud free MODIS-based snow cover product over the Tibetan Plateau. Journal of Glaciology and Geocryology, 39(3): 515-526
邱玉宝, 张欢, 除多, 张雪成, 于小淇, 郑照军. 2017. 基于MODIS的青藏高原逐日无云积雪产品算法. 冰川冻土, 39(3): 515-526 [DOI: 10.7522/j.issn.1000-0240.2017.0058http://dx.doi.org/10.7522/j.issn.1000-0240.2017.0058]
Riggs G .A, Hall D K and Román M O. 2016. MODIS snow products user guide for Collection 6. Aug. 2016. [Online]. https://modis-snow-ice.gsfc.nasa.gov/uploads/C6_MODIS_Snow_User_Guide.pdfhttps://modis-snow-ice.gsfc.nasa.gov/uploads/C6_MODIS_Snow_User_Guide.pdf
Riggs G A, Hall D K and Román M O. 2017. Overview of NASA’s MODIS and visible infrared imaging radiometer suite (VIIRS) snow-cover earth system data records. Earth System Science Data, 9(2): 765-777 [DOI: 10.5194/essd-9-765-2017http://dx.doi.org/10.5194/essd-9-765-2017]
Rittger K, Painter T H, Dozier J. 2013. Assessment of Methods for Mapping Snow Cover from MODIS. Advances in Water Resources, 51: 367-380 [DOI: 10.1016/j.advwatres.2012.03.002http://dx.doi.org/10.1016/j.advwatres.2012.03.002]
Robinson D A and Kukla G. 1985. Maximum surface albedo of seasonally snow-covered lands in the Northern Hemisphere. Journal of Applied Meteorology and Climatology, 24(5): 402-411 [DOI: 10.1175/1520-0450(1985)024<0402:MSAOSS>2.0.CO;2http://dx.doi.org/10.1175/1520-0450(1985)024<0402:MSAOSS>2.0.CO;2]
Robinson D A, Scharfen G, Serreze M C, Kukla G and Barry R G. 1986. Snow melt and surface albedo in the Arctic Basin. Geophysical Research Letters, 13(9): 945-948 [DOI: 10.1029/GL013i009p00945http://dx.doi.org/10.1029/GL013i009p00945]
Salomonson V V and Appel I. 2004. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sensing of Environment, 89(3): 351-360 [DOI: 10.1016/j.rse.2003.10.016http://dx.doi.org/10.1016/j.rse.2003.10.016]
Simic A, Fernandes R, Brown R, Romanov P and Park W. 2004. Validation of VEGETATION, MODIS, and GOES + SSM/I snow-cover products over Canada based on surface snow depth observations. Hydrological Processes, 18(6): 1089-1104 [DOI: 10.1002/hyp.5509http://dx.doi.org/10.1002/hyp.5509]
Tang Z G, Wang J, Li H Y, Yan L L and Liang J. 2013. Accuracy validation and cloud obscuration removal of MODIS fractional snow cover products over Tibetan Plateau. Remote Sensing Technology and Application, 28(3): 423-430
唐志光, 王建, 李弘毅, 彦立利, 梁继. 2013. 青藏高原MODIS积雪面积比例产品的精度验证与去云研究. 遥感技术与应用, 28(3): 423-430 [DOI: 10.11873/j.issn.1004-0323.2013.3.423http://dx.doi.org/10.11873/j.issn.1004-0323.2013.3.423]
Tran H, Nguyen P, Ombadi M, Hsu K L, Sorooshian S and Qing X. 2019. A cloud-free MODIS snow cover dataset for the contiguous United States from 2000 to 2017. Scientific Data, 6: 180300 [DOI: 10.1038/sdata.2018.300http://dx.doi.org/10.1038/sdata.2018.300]
Wang J, Che T, Li Z, Li H Y, Hao X H, Zheng Z J, Xiao P F, Li X F, Huang X D, Zhong X Y, Dai L Y, Li H X, Ke C Q and Li L H. 2018. Investigation on snow characteristics and their distribution in China. Advances in Earth Science, 33(1): 12-26
王建, 车涛, 李震, 李弘毅, 郝晓华, 郑照军, 肖鹏峰, 李晓峰, 黄晓东, 钟歆玥, 戴礼云, 李红星, 柯长青, 李兰海. 2018. 中国积雪特性及分布调查. 地球科学进展, 33(1): 12-26 [DOI: 10.11867/j.issn.1001-8166.2018.01.0012http://dx.doi.org/10.11867/j.issn.1001-8166.2018.01.0012]
Wang J and Li S. 2005. Influence of climate change on the runoff of melting snow in the arid mountainous areas in China. Science in China Series D: Earth Sciences, 35(7): 664-670
王建, 李硕. 2005. 气候变化对中国内陆干旱区山区融雪径流的影响. 中国科学D辑: 地球科学, 35(7): 664-670
Wang X W, Zheng H L, Chen Y N, Liu H A, Liu L, Huang H B and Liu K. 2014. Mapping snow cover variations using a MODIS daily cloud-free snow cover product in northeast China. Journal of Applied Remote Sensing, 8(1): 084681[DOI: 10.1117/1.JRS.8.084681http://dx.doi.org/10.1117/1.JRS.8.084681]
Wang X Y, Wang J, Li H Y and Hao X H. 2017. Combination of NDSI and NDFSI for snow cover mapping in a mountainous and forested region. Journal of Remote Sensing, 21(2): 310-317
王晓艳, 王建, 李弘毅, 郝晓华. 2017. NDSI与NDFSI结合的山区林地积雪制图方法. 遥感学报, 21(2): 310-317 [DOI: 10.11834/jrs.20176211http://dx.doi.org/10.11834/jrs.20176211]
Yang J T, Jiang L M, Ménard C B, Luojus K, Lemmetyinen J and Pulliainen J. 2015. Evaluation of snow products over the Tibetan Plateau. Hydrological Processes, 29(15): 3247-3260 [DOI: 10.1002/hyp.10427http://dx.doi.org/10.1002/hyp.10427]
Yang M X, Yao T D and Koike T. 2000. Variation features of soil temperature in Northern Tibetan Plateau. Journal of Mountain Science, 18(1): 13-17
杨梅学, 姚檀栋, Koike T. 2000. 藏北高原土壤温度的变化特征. 山地学报, 18(1): 13-17 [DOI: 10.3969/j.issn.1008-2786.2000.01.003http://dx.doi.org/10.3969/j.issn.1008-2786.2000.01.003]
Yu J Y, Zhang G Q, Yao T D, Xie H J, Zhang H B, Ke C Q and Yao R Z. 2016. Developing daily cloud-free snow composite products from MODIS Terra-Aqua and IMS for the Tibetan Plateau. IEEE Transactions on Geoscience and Remote Sensing, 54(4): 2171-2180 [DOI: 10.1109/TGRS.2015.2496950http://dx.doi.org/10.1109/TGRS.2015.2496950]
Yu X Q, Qiu Y B, Ruan Y J, Shi L J and Laba Z M. 2017. Validation and comparison of binary cloudless snow products in high Asia. Remote Sensing Technology and Application, 32(1): 37-48
于小淇, 邱玉宝, 阮永俭, 石利娟, 拉巴卓玛. 2017. 高亚洲地区无云积雪遥感二值产品对比和精度验证分析. 遥感技术与应用, 32(1): 37-48 [DOI: 10.11873/j.issn.1004-0323.2017.1.0037http://dx.doi.org/10.11873/j.issn.1004-0323.2017.1.0037]
Zhang H B, Zhang F, Zhang G Q, Che T, Yan W, Ye M and Ma N. 2019. Ground-based evaluation of MODIS snow cover product V6 across China: implications for the selection of NDSI threshold. Science of the Total Environment, 651: 2712-2726 [DOI: 10.1016/j.scitotenv.2018.10.128http://dx.doi.org/10.1016/j.scitotenv.2018.10.128]
Zhao X Y, Zhao Z B, Liu J H, Liu Q and Li Y K. 2022. Influences of multi-source and multi-resolution DEMs on glacier simulation in Mt. Noijin Kangsang. Quaternary Sciences, 42(4): 1181-1192
赵晓艳, 赵志斌, 刘金花, 刘强, 李英奎. 2022. 多源多分辨率DEMs对宁金康桑峰地区冰川模拟的影响研究. 第四纪研究, 42(4): 1181-1192 [DOI: 10.11928/j.issn.1001-7410.2022.04.21http://dx.doi.org/10.11928/j.issn.1001-7410.2022.04.21]
Zhu X L, Chen J, Gao F, Chen X H and Masek J G. 2010. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 114(11): 2610-2623 [DOI: 10.1016/j.rse.2010.05.032http://dx.doi.org/10.1016/j.rse.2010.05.032]
相关作者
相关机构