基于NDWI-NDSI组合阈值法的布加岗日冰湖提取及其变化分析
Glacier lake extraction and variation analysis of the Bujiagangri glacier based on the NDWI-NDSI combination threshold method
- 2022年26卷第11期 页码:2344-2353
纸质出版日期: 2022-11-07
DOI: 10.11834/jrs.20210205
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-11-07 ,
扫 描 看 全 文
闫斌,贾洪果,任文静,吴仁哲,黄心茹.2022.基于NDWI-NDSI组合阈值法的布加岗日冰湖提取及其变化分析.遥感学报,26(11): 2344-2353
Yan B,Jia H G,Ren W J,Wu R Z and Huang X R. 2022. Glacier lake extraction and variation analysis of the Bujiagangri glacier based on the NDWI-NDSI combination threshold method. National Remote Sensing Bulletin, 26(11):2344-2353
自20世纪90年代以来,中国冰川在全球升温影响下处于全面加速退缩的态势。长时序的冰湖变化既能反映冰川演变过程,也可为冰湖灾害研究提供重要依据。本文提出一种基于NDWI-NDSI组合法提取冰湖的改进方法,有效增加了阈值分割法提取冰湖的适用范围,使冰湖的错分现象得到极大改善;并以1988年—2018年共16景Landsat影像为数据源,成功对布加岗日冰川的冰湖面积实施提取并对其做统计分析和时序研究。进而发现,该冰川出现冰湖数目增多(2个)、面积增大近一倍(从约2.7666 km²增加至约5.2308 km²)的现象,表明其在近30年间消融过快、退缩严重,并阐明温度变化为导致这一现象的主要因素,同时指出由冰川融水导致的部分冰湖诱发洪水、泥石流等次生灾害的可能性也极具增高。
Glaciers are precious solid freshwater resource for humans. Since the 1990s
the glaciers in China have been in accelerating trend in melting due to global warming
so as to increase the sizes of surrounding ice lakes and form new ice lakes. This may result in geological disasters because glacial lake outburst have the characteristics of suddenness
great destructiveness
short duration
and wide distribution. Hence many research work has focused on the monitoring glacial lake changes.
This study proposed an improved method to extract ice lakes based on the NDWI-NDSI combination. In this study
the NDSI (Normalized Difference Snow Index) was used to generate the land masks to separate the lands (foreground) and the mixed regions of land and ice (background). Then the threshold segmentation of masked NDWI was conducted in order to precisely extract the areas of glaciers. In the evaluation experiment
the ice lakes of the Bujiagangri glaciers located in the eastern section of Tanggula in southeastern Tibet were used as study region and 16 Landsat images covering the study area from 1988 to 2018 were used as test data. The experiment results indicated that the proposed method in this study can effectively extract the glaciers and reduce the misclassification compared with the methods using NDWI. By the proposed method
it can be found: (1) the area of the ice lakes has increased nearly 2 times (from about 2.7666 km² to about 5.2308 km²) due to the glacier evolution; (2) the annual increase rates of the areas of glacial lakes in this region is about 0.1230 km²/yr; (3) among the 12 glacial lakes
L-04
L-05 and L-10 glacial lakes have the largest areas (0.5—1.0 km²) and enlargement areas (0.5—1.0 km²). This indicated that the glaciers have greatly rapidly melted and severely retreated in the past 30 years
which may result in potential threats to the personal and property safety of downstream residents and Sichuan Tibet Highway (G317). Further investigations will be conducted to verify the usability of the proposed method in this study in other regions containing the glaciers with different geographic conditions.
冰川全球变暖冰湖面积变化布加岗日冰湖灾害NDWI-NDSI
glacierglobal warmingglacial lake changesBujiagangriglacial lake disasterNDWI-NDSI
An G Y, Han L, Huang S C, Gu Y Q, Guo Z C and Wang S S. 2019. Dynamic Variation of Glaciers in Nyainqentanglha Mountain During 1999-2015: evidence from Remote Sensing. Geoscience, 33(1): 176-186
安国英, 韩磊, 黄树春, 谷延群, 郭兆成, 王珊珊. 2019. 念青唐古拉山现代冰川1999—2015年期间动态变化遥感研究. 现代地质, 33(1): 176-186 [DOI: 10.19657/j.geoscience.1000-8527.2019.01.17http://dx.doi.org/10.19657/j.geoscience.1000-8527.2019.01.17]
Benoudjit A and Guida R. 2019. A novel fully automated mapping of the flood extent on SAR images using a supervised classifier. Remote Sensing, 11(7): 779 [DOI: 10.3390/rs11070779http://dx.doi.org/10.3390/rs11070779]
Bolch T, Buchroithner M F, Peters J, Baessler M and Bajracharya S. 2008. Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery. Natural Hazards and Earth System Sciences, 8(6): 1329-1340 [DOI: 10.5194/nhess-8-1329-2008http://dx.doi.org/10.5194/nhess-8-1329-2008]
Chen H J, Yang J P and Tan C P. 2017. Responsivity of glacier to climate change in China. Journal of Glaciology and Geocryology, 39(1): 16-23
陈虹举, 杨建平, 谭春萍. 2017. 中国冰川变化对气候变化的响应程度研究. 冰川冻土, 39(1): 16-23 [DOI: 10.7522/j.issn.1000-0240.2017.0003http://dx.doi.org/10.7522/j.issn.1000-0240.2017.0003]
Chen N S, Wang Z, Tian S F and Zhu Y H. 2019. Study on debris flow process induced by moraine soil mass failure. Quaternary Sciences, 39(5): 1235-1245
陈宁生, 王政, 田树峰, 朱云华. 2019. 冰碛土体起动泥石流的特征研究. 第四纪研究, 39(5): 1235-1245 [DOI: 10.11928/j.issn.1001-7410.2019.05.15http://dx.doi.org/10.11928/j.issn.1001-7410.2019.05.15]
Hall D K, Riggs G A and Salomonson V V. 1995. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sensing of Environment, 54(2): 127-140 [DOI: 10.1016/0034-4257(95)00137-Phttp://dx.doi.org/10.1016/0034-4257(95)00137-P]
Han J L, Wu S R and Wang H B. 2007. Preliminary study on geological hazard chains. Earth Science Frontiers, 14(6): 11-23
韩金良, 吴树仁, 汪华斌. 2007. 地质灾害链. 地学前缘, 14(6):13 [DOI: 10.3321/j.issn:1005-2321.2007.06.003http://dx.doi.org/10.3321/j.issn:1005-2321.2007.06.003]
Li J L and Sheng Y W. 2012. An automated scheme for glacial lake dynamics mapping using Landsat imagery and digital elevation models: a case study in the Himalayas. International Journal of Remote Sensing, 33(16): 5194-5213 [DOI: 10.1080/01431161.2012.657370http://dx.doi.org/10.1080/01431161.2012.657370]
Li J L, Sheng Y W and Luo J C. 2011. Automatic extraction of Himalayan glacial lakes with remote sensing. Journal of Remote Sensing, 15(1): 29-43
李均力, 盛永伟, 骆剑承. 2011. 喜马拉雅山地区冰湖信息的遥感自动化提取. 遥感学报, 15(1): 29-43 [DOI: 10.11834/jrs.20110103http://dx.doi.org/10.11834/jrs.20110103]
Liu C H, Shi Y F, Wang Z T and Xie Z C. 2002. Glacier resources and their distributive characteristics in China——a review on Chinese glacier inventory. Journal of Glaciology and Geocryology, 22(2): 106-112
刘潮海, 施雅风, 王宗太, 谢自楚. 2002. 中国冰川资源及其分布特征——中国冰川目录编制完成. 冰川冻土, 22(2): 106-112
Liu J K, Zhang J J, Gao B, Li Y L, Li M Y, Wu J D J and Zhou L X. 2019. An overview of glacial lake outburst flood in Tibet, China. Journal of Glaciology and Geocryology, 41(6): 1335-1347
刘建康, 张佳佳, 高波, 李元灵, 李梦宇, 吾金多吉, 周路旭. 2019. 我国西藏地区冰湖溃决灾害综述. 冰川冻土, 41(6): 1335-1347 [DOI: 10.7522/j.issn.1000-0240.2019.0073http://dx.doi.org/10.7522/j.issn.1000-0240.2019.0073]
Liu Q, Guo W Q, Nie Y, Liu S Y and Xu J L. 2016. Recent glacier and glacial lake changes and their interactions in the Bugyai Kangri, southeast Tibet. Annals of Glaciology, 57(71): 61-69 [DOI: 10.3189/2016AoG71A415http://dx.doi.org/10.3189/2016AoG71A415]
Luo J F, Sheng Y W, Shen Z F, Li J L and Gao L J. 2009. Automatic and high-precise extraction for water information from multispectral images with the step-by-step iterative transformation mechanism. Journal of Remote Sensing, 13(4): 604-615
骆剑承, 盛永伟, 沈占锋, 李均力, 郜丽静. 2009. 分步迭代的多光谱遥感水体信息高精度自动提取. 遥感学报, 13(4): 604-615 [DOI: 10.11834/jrs.20090405http://dx.doi.org/10.11834/jrs.20090405]
McFeeters S K. 1996. The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7): 1425-1432 [DOI: 10.1080/01431169608948714http://dx.doi.org/10.1080/01431169608948714]
Otsu N. 1979. A threshold selection method from gray-level histogram. IEEE Transactions on Systems, Man, and Cybernetics, 9(1): 62-66 [DOI: 10.1109/TSMC.1979.4310076http://dx.doi.org/10.1109/TSMC.1979.4310076]
Wang C Q, Yang T B, Ji Q and He Y. 2016. Variation of glacier and Its response to climate change in the Bujiagangri Region from 1988 to 2013. Research of Soil and Water Conservation, 23(4): 70-76
王聪强, 杨太保, 冀琴, 何毅. 2016. 1988—2013年布加岗日地区冰川变化及其对气候变化的响应. 水土保持研究, 23(4): 70-76 [DOI: 10.13869/j.cnki.rswc.2016.04.009http://dx.doi.org/10.13869/j.cnki.rswc.2016.04.009]
Wang N L and Ding L F. 2002. Study on the glacier variation in Bujiagangri Section of the East Tanggula Range since the Little Ice Age. Journal of Glaciology and Geocryology, 24(3): 234-244
王宁练, 丁良福. 2002. 唐古拉山东段布加岗日地区小冰期以来的冰川变化研究. 冰川冻土, 24(3): 234-244 [DOI: 10.3969/j.issn.1000-0240.2002.03.003http://dx.doi.org/10.3969/j.issn.1000-0240.2002.03.003]
Wang S J and Zhou L Y. 2017. Glacial lake outburst flood disasters and integrated risk management in China. International Journal of Disaster Risk Science, 8(4): 493-497 [DOI: 10.1007/s13753-017-0152-7http://dx.doi.org/10.1007/s13753-017-0152-7]
Watson C S, King O, Miles E S and Quincey D J. 2018. Optimising NDWI supraglacial pond classification on Himalayan debris-covered glaciers. Remote Sensing of Environment, 217: 414-425 [DOI: 10.1016/j.rse.2018.08.020http://dx.doi.org/10.1016/j.rse.2018.08.020]
Wendleder A, Friedl P and Mayer C. 2018. Impacts of climate and supraglacial lakes on the surface velocity of Baltoro Glacier from 1992 to 2017. Remote Sensing, 10(11): 1681 [DOI: 10.3390/rs10111681http://dx.doi.org/10.3390/rs10111681]
Wu G J, Yao T D, Wang W C, Zhao H B, Yang W, Zhang G Q, Li S H, Yu W S, Lei Y B and Hu W T. 2019. Glacial hazards on Tibetan Plateau and surrounding alpines. Bulletin of the Chinese Academy of Sciences, 34(11): 1285-1292
邬光剑, 姚檀栋, 王伟财, 赵华标, 杨威, 张国庆, 李生海, 余武生, 类延斌, 胡文涛. 2019. 青藏高原及周边地区的冰川灾害. 中国科学院院刊, 34(11): 1285-1292 [DOI: 10.16418/j.issn.1000-3045.2019.11.011http://dx.doi.org/10.16418/j.issn.1000-3045.2019.11.011]
Xu H Q. 2005. A study on information extraction of water body with the modified normalized difference water index (MNDWI). Journal of Remote Sensing, 9(5): 589-595
徐涵秋. 2005. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究. 遥感学报, 9(5): 589-595 [DOI: 10.11834/jrs.20050586http://dx.doi.org/10.11834/jrs.20050586]
Yang R M, Zhang T J, Zhu L P and Ju J T. 2019. Laigu glacial lake variation and its outburst flood risk in southeast Tibetan Plateau. Quaternary Sciences, 39(5): 1171-1180
杨瑞敏, 张廷军, 朱立平, 鞠建廷. 2019. 青藏高原东南部来古冰湖变化及其溃决洪水评估. 第四纪研究, 39(5): 1171-1180 [DOI: 10.11928/j.issn.1001-7410.2019.05.09http://dx.doi.org/10.11928/j.issn.1001-7410.2019.05.09]
Yao X J, Liu S Y, Han L, Sun M P. 2017. Definition and classification systems of glacial lake for inventory and hazards study. Acta Geographica Sinica, 72(7): 1173-1183
姚晓军, 刘时银, 韩磊, 孙美平. 2017. 冰湖的界定与分类体系——面向冰湖编目和冰湖灾害研究. 地理学报, 72(7): 1173-1183 [DOI: 10.11821/dlxb201707004http://dx.doi.org/10.11821/dlxb201707004]
Yao X J, Liu S Y, Sun M P and Zhang X J. 2014. Study on the glacial lake outburst flood events in Tibet since the 20th century. Journal of Natural Resources, 29(8): 1377-1390
姚晓军, 刘时银, 孙美平, 张秀娟. 2014. 20世纪以来西藏冰湖溃决灾害事件梳理. 自然资源学报, 29(8): 1377-1390 [DOI: 10.11849/zrzyxb.2014.08.010http://dx.doi.org/10.11849/zrzyxb.2014.08.010]
Zhang J T, He X J, Shangguan D H, Zhong F L and Liu S Y. 2012. Impact of intensive glacier ablation on arid regions of Northwest China and its countermeasure. Journal of Glaciology and Geocryology, 34(4): 848-854
张九天, 何霄嘉, 上官冬辉, 钟方雷, 刘时银. 2012. 冰川加剧消融对我国西北干旱区的影响及其适应对策. 冰川冻土, 34(4): 848-854
Zhao X Y, Zhao Z B, Liu J H, Liu Q and Li Y K. 2022. Influences of multi-source and multi-resolution DEMs on glacier simulation in Mt. Noijin Kangsang. Quaternary Sciences, 42(4): 1181-1192
赵晓艳, 赵志斌, 刘金花, 刘强, 李英奎. 2022. 多源多分辨率DEMs对宁金康桑峰地区冰川模拟的影响研究[J]. 第四纪研究, 42(4): 1181-1192 [DOI: 10.11928/j.issn.1001-7410.2022.04.21http://dx.doi.org/10.11928/j.issn.1001-7410.2022.04.21]
相关作者
相关机构