全球数字高程产品概述
Review on global digital elevation products
- 2021年25卷第1期 页码:167-181
纸质出版日期: 2021-01-07
DOI: 10.11834/jrs.20210210
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-01-07 ,
扫 描 看 全 文
唐新明,李世金,李涛,高延东,张书毕,陈乾福,张祥.2021.全球数字高程产品概述.遥感学报,25(1): 167-181
Tang X M,Li S J,Li T,Gao Y D,Zhang S B, Chen Q F and Zhang X. 2021. Review on global digital elevation products. National Remote Sensing Bulletin, 25(1):167-181
随着世界各国乃至全球信息化和数字化的发展以及全球化热点问题的研究,高精度、高分辨率全球数字高程产品在广泛的应用领域中扮演着越来越重要的角色。为了方便不同用户根据个人需求选择合适的数据产品,本文首先论述了数字高程产品的精度衡量指标,并对其常用的指标进行等价描述,以便不同数字产品之间的比较分析;然后从全球化高程数据的获取方式出发,经由最初的多源数据融合,到后续基于光学立体摄影测量及合成孔径雷达干涉测量InSAR(Interferometric Synthetic Aperture Radar)的全球测图,对其发展的ETOPO、GTOPO30、GMTED2010、ASTER GDEM、AW3D30、SRTM及TanDEM-X DEM全球化数据产品的主要性质和特点进行详细介绍,并简单概括了不同数字产品的发展历程。在此基础上,本文以宁夏回族自治区吴忠市一座山脉为例,通过定性及定量对比的方式详细分析了1″及3″经纬度格网分辨率下的数字高程产品。分析表明,对于采用同一种技术手段生产的数字高程产品,AW3D30及ASTER GDEM均展现出相对丰富的地貌细节特征,均优于SRTM及TanDEM-X DEM产品,但ASTER GDEM产品颗粒效应明显,且产品精度较低;而TanDEM-X DEM是从更高分辨率产品重采样获取,因此相对平滑;就数字高程产品的高程精度而言,TanDEM-X DEM产品精度最高,其次为AW3D30及SRTM产品,均远优于由多源数据融合获取的全球数字产品。
Digital elevation products are the digital expression of terrain and elevation information
which has been widely utilized in the fields of climate
meteorology
topography
geological disasters
soil
and hydrology. Meanwhile
the development of information and digitalization all over the world and the research of major global issues have emphasized the increasingly becoming important role of high-precision and -resolution global digital elevation products. Therefore
the public free digital elevation products are comprehensively described and analyzed in this study to facilitate different users to select appropriate data products depending on their personal requirements.
This study first discusses the different measurement indexes of digital elevation products’ accuracy. Moreover
the equivalence relationship between the common measurement indexes is derived to compare and analyze different digital elevation products. The global elevation data acquisition modes are explored first. The main properties and characteristics of ETOPO
GTOPO30
GMTED2010
ASTER GDEM
AW3D30
SRTM
and TanDEM-X DEM global data products are introduced in detail through the initial data fusion and the subsequent global mapping based on optical stereo photogrammetry and interferometric synthetic aperture radar techniques. The development history of different products is also briefly described. The parameters and elevation accuracy among the aforementioned digital elevation products are then summarized and comparatively analyzed. The results are shown in Table 7 and 8
respectively.
On this basis
the different data products under 1″ and 3″ resolution for a mountain located in Wuzhong City
Ningxia Hui Autonomous Region are analyzed in detail by means of qualitative and quantitative comparison. The visual analysis shows that the AW3D30 and ASTER DEM products exhibit the relatively rich landform detail features
and they are both superior to the SRTM and TanDEM-X DEM elevation products. However
the particle effects obviously appear in the ASTER GDEM products
and the precision of these products is low. Among these products
the TanDEM-X DEM products are relatively smooth because they are derived by resampling the high- resolution products. In terms of elevation accuracy
TanDEM-X DEM products have the highest accuracy and are followed by AW3D30 and SRTM products. These products are greatly superior to the global digital elevation products obtained by multi-source data fusion. The quantitative difference analysis results of different products are consistent with the conclusion mentioned above.
In general
adopting the advanced satellite remote sensing technology to obtain elevation data with uniform data source
quality
and precision will be the development trend of global digital elevation products. Furthermore
the application field of digital elevation products with high precision and resolution obtained by advanced techniques will be expanded from the initial change research of global large area to the application research related to elevation of urban and even local small area. Therefore
domestic digital elevation products
which can be controlled independently
are urgently demanded. Meanwhile
the popular domestic LuTan-1 SAR satellite with the interference as main task will soon be launched
and it will provide a good technical foundation for the production and acquisition of domestic global digital elevation products.
全球数字高程产品光学立体摄影测量InSAR数字高程产品精度
global digital elevation productoptical stereo photogrammetryInSARdigital elevation product’s accuracy
Abrams M, Hook S and Ramachandran B. 2002. ASTER User Handbook. Version 2. Pasadena, CA: Jet Propulsion Laboratory
Amante C and Eakins B W. 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA [DOI: 10.7289/V5C8276Mhttp://dx.doi.org/10.7289/V5C8276M]
Arabelos D. 2000. Intercomparisons of the global DTMs ETOPO5, TerrainBase and JGP95E. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 25(1): 89-93 [DOI: 10.1016/S1464-1895(00)00015-6http://dx.doi.org/10.1016/S1464-1895(00)00015-6]
Athmania D and Achour H. 2014. External validation of the ASTER GDEM2, GMTED2010 and CGIAR-CSI- SRTM v4.1 free access digital elevation models (DEMs) in Tunisia and Algeria. Remote Sensing, 6(5): 4600-4620 [DOI: 10.3390/rs6054600http://dx.doi.org/10.3390/rs6054600]
Bamler R. 1999. The SRTM mission: a world-wide 30 m resolution DEM from SAR interferometry in 11 days//Photogrammetric Week. Heidelberg: Herbert Wichmann: 145-154
Caglar B, Becek K, Mekik C and Ozendi M. 2018. On the vertical accuracy of the ALOS world 3D-30m digital elevation model. Remote Sensing Letters, 9(6): 607-615 [DOI: 10.1080/2150704x.2018.1453174http://dx.doi.org/10.1080/2150704x.2018.1453174]
Carabajal C C, Harding D J, Boy J P, Danielson J J, Gesch D B and Suchdeo V P. 2011. Evaluation of the global multi-resolution terrain elevation data 2010 (GMTED2010) using ICESat geodetic control//Proceedings Volume 8286, International Symposium on Lidar and Radar Mapping 2011: Technologies and Applications. Nanjing, China: SPIE [DOI: 10.1117/12.912776http://dx.doi.org/10.1117/12.912776]
Courty L G, Soriano-Monzalvo J C and Pedrozo-Acuña A. 2019. Evaluation of open-access global digital elevation models (AW3D30, SRTM, and ASTER) for flood modelling purposes. Journal of Flood Risk Management, 12(S1): e12550 [DOI: 10.1111/jfr3.12550http://dx.doi.org/10.1111/jfr3.12550]
Danielson J J and Gesch D B. 2011. Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010. Affiliation: U.S. Department of the Interior and U.S. Geological Survey.
Danko D M. 1992. The digital chart of the world. GeoInfo Systems, 2: 29-36
Divins D L and Metzger D. 2008. NGDC coastal relief model. National Geophysical Data Center, National Oceanic and Atmospheric Administration, US Department of Commerce
Farr T G and Kobrick M. 1999. The shuttle radar topography mission: a global DEM. American Geophysical Union, 45(2): 37-55
Farr T G, Rosen P A, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D and Alsdorf D. 2007. The shuttle radar topography mission. Reviews of Geophysics, 45(2):
RG2004 [DOI: 10.1029/2005RG000183http://dx.doi.org/10.1029/2005RG000183]
Franke R. 1982. Smooth interpolation of scattered data by local thin plate splines. Computers and Mathematics with Applications, 8(4): 273-281 [DOI: 10.1016/0898-1221(82)90009-8http://dx.doi.org/10.1016/0898-1221(82)90009-8]
Gesch D B. 1998. Accuracy assessment of a global elevation model using Shuttle Laser Altimeter data//Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Seattle, WA, USA: IEEE, 2: 840-842 [DOI: 10.1109/IGARSS.1998.699601http://dx.doi.org/10.1109/IGARSS.1998.699601]
Gesch D B and Larson K S. 1996. Techniques for development of global 1-kilometer digital elevation models//Pecora Thirteen, Human Interactions with the Environment-Perspectives from Space. Sioux Falls, South Dakota: [s.n.]
Gesch D B, Verdin K L and Greenlee S K. 1999. New land surface digital elevation model covers the Earth. EOS Transactions American Geophysical Union, 80(6): 69-70 [DOI: 10.1029/99EO00050http://dx.doi.org/10.1029/99EO00050]
Hastings D A and Dunbar P K. 1999. Global land one-kilometer base elevation (GLOBE) digital elevation model, documentation, olume 1.0. Key to Geophysical Records Documentation (KGRD) 34. National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325: 80303-3328
Hirt C, Filmer M S and Featherstone W E. 2010. Comparison and validation of the recent freely available ASTER-GDEM ver1, SRTM ver4.1 and GEODATA DEM-9S ver3 digital elevation models over Australia. Australian Journal of Earth Sciences, 57(3): 337-347 [DOI: 10.1080/08120091003677553http://dx.doi.org/10.1080/08120091003677553]
Huang Z Y, Wang S T, Li J, Xin G D, Huang L Y and Zhang Q Q. 2017. The different expressions of the positioning accuracy of "TH-01" satellite//The 8th China Satellite Navigation Conference. Shanghai (黄志勇, 王淑婷, 李晶, 辛国栋, 黄令勇, 张倩倩. 2017. “天绘一号”卫星定位精度的不同表述//第八届中国卫星导航学术年会. 上海)
Hutchinson M F. 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology, 106(3/4): 211-232 [DOI: 10.1016/0022-1694(89)90073-5http://dx.doi.org/10.1016/0022-1694(89)90073-5]
Jakobsson M, Cherkis N, Woodward J, Macnab R and Coakley B. 2000. New grid of Arctic bathymetry aids scientists and mapmakers. EOS Transactions American Geophysical Union, 81(9): 89-96 [DOI: 10.1029/00EO00059http://dx.doi.org/10.1029/00EO00059]
Jarvis A, Reuter H I, Nelson A and Guevara E. 2008. Hole-filled SRTM for the globe Version 4. CGIAR-CSI SRTM 90m Database.
Jin G D, Liu K Y, Deng Y K, Sha Y, Wang R, Liu D C, Wang W, Long Y J and Zhang Y W. 2019. Nonlinear frequency modulation signal generator in LT-1. IEEE Geoscience and Remote Sensing Letters, 16(10): 1570-1574 [DOI: 10.1109/lgrs.2019.2905359http://dx.doi.org/10.1109/lgrs.2019.2905359]
Krieger G, Moreira A, Fiedler H, Hajnsek I, Werner M, Younis M and Zink M. 2007. TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 4(11): 3317-3341 [DOI: 10.1109/tgrs.2007.90 0693http://dx.doi.org/10.1109/tgrs.2007.900693]
Li C, Zhang H, Deng Y K, Wang R, Liu K Y, Liu D C, Jin G D and Zhang Y Y. 2020. Focusing the L-band spaceborne bistatic SAR mission data using a modified RD algorithm. IEEE Transactions on Geoscience and Remote Sensing, 58(1): 294-306 [DOI: 10.1109/TGRS.2019.2936255http://dx.doi.org/10.1109/TGRS.2019.2936255]
Li Z H, Li P, Ding T and Wang H J. 2018. Research progress of global high resolution digital elevation models. Geomatics and Information Science of Wuhan University, 43(12): 1927-1942
李振洪, 李鹏, 丁咚, 王厚杰. 2018. 全球高分辨率数字高程模型研究进展与展望. 武汉大学学报(信息科学版), 43(12): 1927-1942 [DOI: 10.13203/j.whugis20180295http://dx.doi.org/10.13203/j.whugis20180295]
Mouratidis A, Briole P and Katsambalos K. 2010. SRTM 3″ DEM (versions 1, 2, 3, 4) validation by means of extensive kinematic GPS measurements: a case study from North Greece. International Journal of Remote Sensing, 31(23): 6205-6222 [DOI: 10.1080/01431160903401403http://dx.doi.org/10.1080/01431160903401403]
NASA, LP DAAC. 2013. NASA Shuttle Radar Topography Mission (SRTM) Version 3.0 (SRTM Plus) Product Release. Land Process Distributed Active Archive Center. National Aeronautics Space Administration
Nikolakopoulos K G, Kamaratakis E K and Chrysoulakis N. 2006. SRTM vs ASTER elevation products. Comparison for two regions in Crete, Greece. International Journal of Remote Sensing, 27(21): 4819-4838 [DOI: 10.1080/01431160600835853http://dx.doi.org/10.1080/01431160600835853]
NOAA, NGDC. 1988. Data Announcement 88-MGG-02. Digital relief of the Surface of the Earth. Boulder, Colorado: NOAA
Osawa Y. 2004. Optical and microwave sensor on Japanese Mapping Satellite-ALOS. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 35: 309-312
Product Description. 2018. ALOS global digital surface model (DSM) ALOS World 3D-30m (AW3D30) version 2.1//Earth Observation Research Center and Japan Aerospace Exploration Agency
Product Description. 2020. ALOS global digital surface model (DSM) ALOS world 3d-30m (AW3D30) version 2.2//Earth Observation Research Center and Japan Aerospace Exploration Agency
Rexer M and Hirt C. 2014. Comparison of free high resolution digital elevation data sets (ASTER GDEM2, SRTM v2.1/v4.1) and validation against accurate heights from the Australian National Gravity Database. Australian Journal of Earth Sciences, 61(2): 213-226 [DOI: 10.1080/08120099.2014.884983http://dx.doi.org/10.1080/08120099.2014.884983]
Rizzoli P, Martone M, Gonzalez C, Wecklich C, Tridon D B, Bräutigam B, Bachmann M, Schulze D, Fritz T, Huber M, Wessel B, Krieger G, Zink M and Moreira A. 2017. Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS Journal of Photogrammetry and Remote Sensing, 132: 119-139 [DOI: 10.1016/j.isprsjprs.2017.08.008http://dx.doi.org/10.1016/j.isprsjprs.2017.08.008]
Rodriguez E, Morris C S, Belz J E, Chapin E C, Martin J M, Daffer W and Hensley S. 2005. An assessment of the SRTM topographic products. Technical Report JPL D-31639
Smith W H F and Sandwell D T. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334): 1956-1962 [DOI: 10.1126/science.277.5334.1956http://dx.doi.org/10.1126/science.277.5334.1956]
Stofan E R, Evans D L, Schmullius C, Holt B, Plaut J J, van Zyl J, Wall S D and Way J. 1995. Overview of results of spaceborne imaging radar-C, X-band synthetic aperture radar (SIR-C/X-SAR). IEEE Transactions on Geoscience and Remote Sensing, 33(4): 817-828 [DOI: 10.1109/36.406668http://dx.doi.org/10.1109/36.406668]
Tachikawa T, Kaku M, Iwasaki A, Gesch D B, Oimoen M J, Zhang Z, Danielson J J, Krieger T, Curtis B and Haase J. 2011. ASTER global digital elevation model version 2-summary of validation results. Tokyo: Earth Remote Sensing Data Analysis Center
Tadono T, Nagai H, Ishida H, Oda F, Naito S, Minakawa K and Iwamoto H. 2016. Generation of the 30 M-Mesh Global Digital Surface Model by Alos Prism//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Prague, Czech Republic, XLI-B4: 157-62 [DOI: 10.5194/isprsarchives-XLI-B4-157-2016http://dx.doi.org/10.5194/isprsarchives-XLI-B4-157-2016]
Tridon D B, Bachmann M, Schulze D, Ortega-Míguez C, Polimeni M D, Martone M, Böer J and Zink M. 2013. TanDEM-X: DEM acquisition in the third year era. International Journal of Space Science and Engineering, 1(4): 367-381 [DOI: 10.1504/IJSPACESE.2013.059270http://dx.doi.org/10.1504/IJSPACESE.2013.059270]
Van Zyl J J. 2001. The Shuttle Radar Topography Mission (SRTM): a breakthrough in remote sensing of topography. Acta Astronautica, 48(5/12): 559-565 [DOI: 10.1016/S0094-5765(01)00020-0http://dx.doi.org/10.1016/S0094-5765(01)00020-0]
Varga M and Bašić T. 2013. Quality assessment and comparison of Global Digital Elevation Models on the territory of Republic of Croatia. Kartografija i Geoinformacije, 12(20): 4-17
Wecklich C, Gonzalez C and Rizzoli P. 2017. TanDEM-X height performance and data coverage//2017 IEEE International Geoscience and Remote Sensing Symposium. Fort Worth, TX, USA: IEEE: 4088-4091 [DOI: 10.1109/IGARSS.2017.8127898http://dx.doi.org/10.1109/IGARSS.2017.8127898]
Wessel B. 2018. TanDEM-X ground segment-DEM products specification document. Earth Observation Center
Zink M, Moreira A, Bachmann M, Rizzoli P, Fritz T, Hajnsek I, Krieger G and Wessel B. 2017. The global TanDEM-X DEM - a unique data set//2017 IEEE International Geoscience and Remote Sensing Symposium. Fort Worth, TX, USA: IEEE: 906-909 [DOI: 10.1109/IGARSS.2017.8127099http://dx.doi.org/10.1109/IGARSS.2017.8127099]
相关作者
相关机构