耦合地表方向反射特性的城市地区气溶胶光学厚度遥感反演
Retrieval of aerosol optical depth over urban area by coupling the characteristics of surface directional reflection
- 2022年26卷第11期 页码:2219-2233
纸质出版日期: 2022-11-07
DOI: 10.11834/jrs.20210217
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-11-07 ,
扫 描 看 全 文
田信鹏,高志强,刘强,王德,王跃启.2022.耦合地表方向反射特性的城市地区气溶胶光学厚度遥感反演.遥感学报,26(11): 2219-2233
Tian X P,Gao Z Q,Liu Q,Wang D and Wang Y Q. 2022. Retrieval of aerosol optical depth over urban area by coupling the characteristics of surface directional reflection. National Remote Sensing Bulletin, 26(11):2219-2233
地气分离是气溶胶光学厚度AOD(Aerosol Optical Depth)卫星遥感反演中的难点之一,当前大多反演算法一般将地表假定为朗伯体,这使得反演结果在城市等高异质地区具有较大的不确定性。本文利用长时间序列MODIS BRDF/Abledo产品,通过离散余弦变换的惩罚最小二乘估计时空滤波算法构建了地表BRDF形状因子先验数据集。通过耦合考虑地表各向异性反射特性的辐射传输前向模型及半经验核驱动模型,以先验数据集为驱动进行地表参数估算,实现考虑地表BRDF效应的气溶胶遥感反演。基于该算法,以北京为研究区开展了Landsat 8 OLI传感器反演实验,并使用AERONET地基观测数据及与朗伯假设和地表反射率数据库支持反演进行交叉对比,结果表明,新算法在城市/植被地区的反演点对在期望误差线内比重为84.6%/86.0%,可以有效改善朗伯假设对AOD的高估。通过与MODIS气溶胶产品(MOD04/MCD19A2)对比,新算法获取的AOD与AERONET观测值具有更高的一致性,城市站点反演结果在误差线内占比较DT、DB、DTDB及MAIAC产品分别提高了46.8%、13.9%、14.7%及4.4%,且有效对比点数高于MODIS产品。新算法可以获取500 m空间分辨AOD,能提供空间更为连续的气溶胶细节信息,显示了在支持区域污染精细管控及污染物溯源等领域的应用潜力。
Aerosols play an important role in determining the Earth's radiation budget and its impact on climate change. Aerosol optical depth (AOD) is a crucial fundamental parameter for meteorological observation and a basic optical property of aerosol derived from satellites. Over land
the aerosol contribution in satellite signals is small compared with the surface
making it difficult to separate the aerosol path radiance from satellite measurements
particularly over the urban area. In the past several decades
numerous different AOD retrieval algorithms have been proposed by using different satellite sensors
but most of them do not consider surface anisotropy.
The main purpose of this work is to improve the accuracy of aerosol retrievals and reduce the uncertainty of the operational MODIS AOD products over mixed surfaces. On this basis
a new generic high-performance aerosol retrieval algorithm is presented and explained. The new method is developed by coupling the non-Lambertian atmospheric radiative transfer model and semiempirical linear kernel-driven BRDF model. First
an
a priori
surface BRDF shape parameter database is constructed using the daily MODIS BRDF/Albedo product by using penalized least square regression based on a 3D discrete cosine transform (DCT-PLS) method. Then
the estimation of surface reflectance
including bidirectional reflectance
directional to hemispheric reflectance
hemispheric to directional reflectance
and bi-hemispheric reflectance (also called white-sky albedo
WSA)
is based on this database and kernel-driven BRDF model. The presented method is tested on the Landsat 8 OLI images around the Beijing area
which features highly heterogeneous surfaces and severe air pollution problems. AOD retrievals with 500 m resolution can be successfully obtained over dark and bright surfaces.
An accuracy assessment of the new algorithm
WSA-derived and HARLS AOD retrievals against AERONET AOD
from the four selected stations indicated the superiority of new algorithm
which is reflected in the high PWE and low RMSE. The comparison results show that the new algorithm is in good agreement with ground-based AOD (R=0.911) compared with the WSA-derived and HARLS AOD retrievals. Furthermore
the new algorithm and MODIS aerosol algorithms have similar spatial patterns of AOD. The new algorithm significantly improves the accuracy of aerosol retrievals
which is verified by AERONET AOD data
especially over brighter surfaces
because surface anisotropy is considered in this algorithm. The new algorithm can provide a detailed AOD spatial distribution over mixed surfaces and shows high ability in capturing fine-scale features. The new algorithm and MAIAC AOD retrievals have a similar spread of uncertainty envelopes. However
the new algorithm AOD retrievals have a higher correlation and smaller RMSE than the MAIAC retrievals
and the number of collections with AERONET for the new algorithm is almost 1.5 times those for MAIAC.
This new AOD retrieval algorithm can provide a possibility for high-precision urban aerosol remote sensing monitoring and solve other pressing issues
such as long-term trend analysis of urban aerosols and air quality conditions
especially in heavily polluted areas. Based on the collocated observations
the new algorithm achieved satisfactory retrieval accuracy. However
several issues remain to be solved in the future. First
the retrieval errors of the MODIS BRDF kernel parameters are also a major source of uncertainty. Second
more analyses of the aerosol models and model selection are required. Third
the application in other regions and sensors is required in further work to evaluate the applicability of new algorithm.
气溶胶光学厚度地表方向反射核驱动模型MODISLandsat 8 OLI
aerosol optical depthsurface anisotropykernel-driven BRDF modelMODISLandsat 8 OLI
Chen J, Ma L, Chen X H and Rao Y H. 2016. Research progress of spectral mixture analysis. Journal of Remote Sensing, 20(5):1102-1109
陈晋, 马磊, 陈学泓, 饶玉晗. 2016. 混合像元分解技术及其进展. 遥感学报, 20(05): 1102-1109 [DOI: 10.11834/jrs.20166169http://dx.doi.org/10.11834/jrs.20166169]
Chu D A, Kaufman Y J, Ichoku C, Remer L A, Tanré D and Holben B N. 2002. Validation of MODIS aerosol optical depth retrieval over land. Geophysical Research Letters, 29(12): 1617-1620 [DOI: 10.1029/2001GL013205http://dx.doi.org/10.1029/2001GL013205]
Diner D J, Martonchik J V, Kahn R A, Pinty B, Gobron N, Nelson D L and Holben B N. 2005. Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land. Remote Sensing of Environment, 94(2): 155-171 [DOI: 10.1016/j.rse.2004.09.009http://dx.doi.org/10.1016/j.rse.2004.09.009]
Garcia D. 2010. Robust smoothing of gridded data in one and higher dimensions with missing values. Computational Statistics and Data Analysis, 54(4): 1167-1178 [DOI: 10.1016/j.csda.2009.09.020http://dx.doi.org/10.1016/j.csda.2009.09.020]
Gatebe C K and King M D. 2016. Airborne spectral BRDF of various surface types (ocean, vegetation, snow, desert, wetlands, cloud decks, smoke layers) for remote sensing applications. Remote Sensing of Environment, 179, 131-148 [DOI: 10.1016/j.rse.2016.03.029http://dx.doi.org/10.1016/j.rse.2016.03.029]
Ge B Y, Yang L K, Chen X F, Li Z Q, Mei X D and Liu L. 2018. Study on aerosol optical depth retrieval over land from Himawari-8 data based on dark target method. Journal of Remote Sensing, 22(1): 38-50
葛邦宇, 杨磊库, 陈兴峰, 李正强, 梅笑冬, 刘李. 2018. 暗目标法的Himawari-8静止卫星数据气溶胶反演. 遥感学报, 22(1): 38-50 [DOI: 10.11834/jrs.20187033http://dx.doi.org/10.11834/jrs.20187033]
Giles D M, Sinyuk A, Sorokin M G, Schafer J S, Smirnov A, Slutsker I, Eck T F, Holben B N, Lewis J R, Campbell J R, Welton E J, Korkin S V and Lyapustin A I. 2019. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database - automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmospheric Measurement Techniques, 12(1): 169-209 [DOI: 10.5194/amt-12-169-2019http://dx.doi.org/10.5194/amt-12-169-2019]
Holben B N, Eck T F, Slutsker I, Tanré D, Buis J P, Setzer A, Vermote E, Reagan J A, Kaufman Y J, Nakajima T, Lavenu F, Jankowiak I and Smirnov A. 1998. AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66(1): 1-16 [DOI: 10.1016/S0034-4257(98)00031-5http://dx.doi.org/10.1016/S0034-4257(98)00031-5]
Hsu N C, Jeong M J, Bettenhausen C, Sayer A M, Hansell R, Seftor C S, Huang J and Tsay S C. 2013. Enhanced Deep Blue aerosol retrieval algorithm: the second generation. Journal of Geophysical Research: Atmospheres, 118(16): 9296-9315 [DOI: 10.1002/jgrd.50712http://dx.doi.org/10.1002/jgrd.50712]
Hsu N C, Tsay S C, King M D and Herman J R. 2004. Aerosol properties over bright-reflecting source regions. IEEE Transactions on Geoscience and Remote Sensing, 42(3): 557-569 [DOI: 10.1109/TGRS.2004.824067http://dx.doi.org/10.1109/TGRS.2004.824067]
Jia C, Sun L, Chen Y F, Zhang X K, Wang W Y and Wang Y J. 2020. Inversion of aerosol optical depth for Landsat 8 OLI data using deep belief network. Journal of Remote Sensing, 24(10): 1180-1192
贾臣, 孙林, 陈允芳, 张熙空, 王伟燕, 王永吉. 2020. 深度置信网络算法反演Landsat 8 OLI气溶胶光学厚度.遥感学报, 24(10): 1180-1192 [DOI: 10.11834/jrs.20200048http://dx.doi.org/10.11834/jrs.20200048]
Kaufman Y J, Wald A E, Remer L A, Gao B C, Li R R and Flynn L. 1997. The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE Transactions on Geoscience and Remote Sensing, 35(5): 1286-1298 [DOI: 10.1109/36.628795http://dx.doi.org/10.1109/36.628795]
Levy R C, Mattoo S, Munchak L A, Remer L A, Sayer A M, Patadia F and Hsu N C. 2013. The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 6(11): 2989-3034 [DOI: 10.5194/amt-6-2989-2013http://dx.doi.org/10.5194/amt-6-2989-2013]
Levy R C, Remer L A, Kleidman R G, Mattoo S, Ichoku C, Kahn R and Eck T F. 2010. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics, 10(21): 10399-10420 [DOI: 10.5194/acp-10-10399-2010http://dx.doi.org/10.5194/acp-10-10399-2010]
Li Z Q, Xie Y S, Zhang Y, Li L, Xu H, Li K T and Li D H. 2019. Advance in the remote sensing of atmospheric aerosol composition. Journal of Remote Sensing, 23(3): 359-373
李正强, 谢一凇, 张莹, 李雷, 许华, 李凯涛, 李东辉. 2019. 大气气溶胶成分遥感研究进展. 遥感学报, 23(3): 359-373 [DOI: 10.11834/jrs.20198185http://dx.doi.org/10.11834/jrs.20198185]
Liang S L, Li X W and Wang J D. 2013. Quantitative remote sensing: Idea and algorithm. Beijing: Science Press
梁顺林, 李小文, 王锦地. 2013. 定量遥感: 理念与算法. 北京: 科学出版社
Liang S L, Fang H L, Chen M Z, Shuey C J, Walthall C, Daughtry C, Morisette J, Schaaf C and Strahler A. 2002. Validating MODIS land surface reflectance and albedo products: methods and preliminary results. Remote Sensing of Environment, 83(1/2): 149-162 [DOI: 10.1016/S0034-4257(02)00092-5http://dx.doi.org/10.1016/S0034-4257(02)00092-5]
Lucht W, Schaaf C B and Strahler A H. 2000. An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Transactions on Geoscience and Remote Sensing, 38(2): 977-998 [DOI: 10.1109/36.841980http://dx.doi.org/10.1109/36.841980]
Lyapustin A, Wang Y J, Korkin S and Huang D. 2018. MODIS Collection 6 MAIAC algorithm. Atmospheric Measurement Techniques, 11(10): 5741-5765 [DOI: 10.5194/amt-11-5741-2018http://dx.doi.org/10.5194/amt-11-5741-2018]
Omar A H, Won J G, Winker D M, Yoon S C, Dubovik O and McCormick M P. 2005. Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements. Journal of Geophysical Research: Atmospheres, 110(D10): D10S14 [DOI: 10.1029/2004JD004874http://dx.doi.org/10.1029/2004JD004874]
Pokrovsky O and Roujean J L. 2003. Land surface albedo retrieval via kernel-based BRDF modeling: I. Statistical inversion method and model comparison. Remote Sensing of Environment, 84(1): 100-119 [DOI: 10.1016/S0034-4257(02)00100-1http://dx.doi.org/10.1016/S0034-4257(02)00100-1]
Qin W H, Herman J R and Ahmad Z. 2001. A fast, accurate algorithm to account for non-Lambertian surface effects on TOA radiance. Journal of Geophysical Research: Atmospheres, 106(D19): 22671-22684 [DOI: 10.1029/2001JD900215http://dx.doi.org/10.1029/2001JD900215]
Sayer A M, Munchak L A, Hsu N C, Levy R C, Bettenhausen C and Jeong M J. 2014. MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. Journal of Geophysical Research: Atmospheres, 119(24): 13965-13989 [DOI: 10.1002/2014JD022453http://dx.doi.org/10.1002/2014JD022453]
She L, Xue Y, Yang X H, Leys J, Guang J, Che Y H, Fan C, Xie Y Q and Li Y. 2019. Joint retrieval of aerosol optical depth and surface reflectance over land using geostationary satellite data. IEEE Transactions on Geoscience and Remote Sensing, 57(3): 1489-1501 [DOI: 10.1109/TGRS.2018.2867000http://dx.doi.org/10.1109/TGRS.2018.2867000]
Shi S Y, Cheng T H, Gu X F, Chen H, Guo H, Wang Y, Bao F W, Xu B R, Wang W N, Zuo X, Meng C and Zhang X C. 2017. Synergy of MODIS and AATSR for better retrieval of aerosol optical depth and land surface directional reflectance. Remote Sensing of Environment, 195: 130-141 [DOI: 10.1016/j.rse.2017.04.010http://dx.doi.org/10.1016/j.rse.2017.04.010]
Smirnov A, Holben B N, Eck T F, Dubovik O and Slutsker I. 2000. Cloud-screening and quality control algorithms for the AERONET database. Remote Sensing of Environment, 73(3): 337-349 [DOI: 10.1016/S0034-4257(00)00109-7http://dx.doi.org/10.1016/S0034-4257(00)00109-7]
Strahler A H, Lucht W, Schaaf C B, Tsang T, Gao F, Li X W, Muller J P, Lewis P and Barnsley M. 1999. MODIS BRDF/Albedo Product: Algorithm Theoretical Basis Document Version 5.0. MODIS Documentation
Su T N, Laszlo I, Li Z Q, Wei J and Kalluri S. 2020. Refining aerosol optical depth retrievals over land by constructing the relationship of spectral surface reflectances through deep learning: Application to Himawari-8. Remote Sensing of Environment, 251: 112093-112107 [DOI: 10.1016/j.rse.2020.112093http://dx.doi.org/10.1016/j.rse.2020.112093]
Sun L, Wei J, Bilal M, Tian X P, Jia C, Guo Y M and Mi X T. 2016. Aerosol optical depth retrieval over bright areas using Landsat 8 OLI images. Remote Sensing, 8(1): 23-36 [DOI: 10.3390/rs8010023http://dx.doi.org/10.3390/rs8010023]
Sun L, Yu H Y, Fu Q Y, Wang J, Tian X P and Mi X T. 2016. Aerosol optical depth retrieval and atmospheric correction application for GF-1 PMS supported by land surface reflectance data. Journal of Remote Sensing, 20(2): 216-228
孙林, 于会泳, 傅俏燕, 王健, 田信鹏, 米雪婷. 2016. 地表反射率产品支持的GF-1PMS气溶胶光学厚度反演及大气校正. 遥感学报, 20(2): 216-228 [DOI: 10.11834/jrs.20165052http://dx.doi.org/10.11834/jrs.20165052]
Tang J K, Xue Y, Yu T and Guan Y N. 2005. Aerosol optical thickness determination by exploiting the synergy of TERRA and AQUA MODIS. Remote Sensing of Environment, 94(3): 327-334 [DOI: 10.1016/j.rse.2004.09.013http://dx.doi.org/10.1016/j.rse.2004.09.013]
Tian X P, Liu Q, Gao Z Q, Wang Y Q, Li X H and Wei J. 2021a. Improving MODIS aerosol estimates over land with the surface BRDF reflectances using the 3-D discrete cosine transform and RossThick-LiSparse models. IEEE Transactions on Geoscience and Remote Sensing, 59(12): 9851-9860 [DOI: 10.1109/TGRS.2020.3048109http://dx.doi.org/10.1109/TGRS.2020.3048109]
Tian X P, Gao Z Q, Liu Q., Wang Y Q and Li X H. 2021b. Estimation of BRDF model kernel weights under an a priori knowledge-aided constraint. Remote Sensing Letters, 12(2): 146-155 [DOI: 10.1080/2150704X.2020.1823036http://dx.doi.org/10.1080/2150704X.2020.1823036]
Tian X P, Sun L, Liu Q and Li X H. 2018. Retrieval of high-resolution aerosol optical depth using Landsat 8 OLI data over Beijing. Journal of Remote Sensing, 22(1): 51-63
田信鹏, 孙林, 刘强, 李秀红. 2018c. 北京地区Landsat 8OLI高空间分辨率气溶胶光学厚度反演. 遥感学报, 22(1): 51-63 [DOI: 10.11834/jrs.20186362http://dx.doi.org/10.11834/jrs.20186362]
Tian X P, Liu Q, Song Z W, Dou B C and Li X H. 2018. Aerosol optical depth retrieval from Landsat 8 OLI images over urban areas supported by MODIS BRDF/Albedo Data. IEEE Geoscience and Remote Sensing Letters, 15(7): 976-980 [DOI: 10.1109/LGRS.2018.2827200http://dx.doi.org/10.1109/LGRS.2018.2827200]
Vermote E F, Roger J C, Sinyuk A, Saleous N and Dubovik O. 2007. Fusion of MODIS-MISR aerosol inversion for estimation of aerosol absorption. Remote Sensing of Environment, 107(1/2): 81-89 [DOI: 10.1016/j.rse.2006.09.025http://dx.doi.org/10.1016/j.rse.2006.09.025]
Wei J, Li Z Q, Sun L, Yang Y K, Zhao C F and Cai Z X. 2019. Enhanced aerosol estimations from Suomi-NPP VIIRS images over heterogeneous surfaces. IEEE Transactions on Geoscience and Remote Sensing, 57(12): 9534-9543 [DOI: 10.1109/TGRS.2019.2927432http://dx.doi.org/10.1109/TGRS.2019.2927432]
Xiao Z Q, Liang S L, Wang T T and Liu Q. 2015. Reconstruction of satellite-retrieved land-surface reflectance based on temporally-continuous vegetation indices. Remote Sensing, 7(8): 9844-9864 [DOI: 10.3390/rs70809844http://dx.doi.org/10.3390/rs70809844]
Xue Y, Guo J P and Zhang X Y. 2009. Aerosol optical thickness retrieval over non-Lambertian land surface with synergistic use of AATSR radiance measurements and MODIS derived Albedo Model Parameters. Atmospheric Research, 93(4): 736-746 [DOI: 10.1016/j.atmosres.2009.02.013http://dx.doi.org/10.1016/j.atmosres.2009.02.013]
Yang L K, Hu X Q, Wang H, He X W, Liu P, Xu N, Yang Z D and Zhang P. 2022. Preliminary test of quantitative capability in aerosol retrieval over land from MERSI-II onboard FY-3D. National Remote Sensing Bulletin, 26(5): 923-940
杨磊库, 胡秀清, 王涵, 何兴伟, 刘培, 徐娜, 杨忠东, 张鹏. 2022. 风云三号D星MERSI-Ⅱ陆地气溶胶反演定量能力评估. 遥感学报, 26(5):923-940 [DOI: 10.11834/jrs.20210286http://dx.doi.org/10.11834/jrs.20210286]
Yang L K, Xue Y, Guang J, Kazemian H, Zhang J H and Li C. 2014. Improved aerosol optical depth and Ångstrom exponent retrieval over land from MODIS based on the non-lambertian forward model. IEEE Geoscience and Remote Sensing Letters, 11(9): 1629-1633 [DOI: 10.1109/LGRS.2014.2303317http://dx.doi.org/10.1109/LGRS.2014.2303317]
Zhang H, Jiao Z T, Dong Y D, Li J Y and Li X W. 2015. Albedo retrieved from BRDF archetype and surface directional reflectance. Journal of Remote Sensing, 19(3): 355-367.
张虎, 焦子锑, 董亚冬, 李佳悦, 李小文. 2015. 利用BRDF原型和单方向反射率数据估算地表反照率. 遥感学报, 19(03): 355-367 [DOI: 10.11834/jrs.20154131http://dx.doi.org/10.11834/jrs.20154131]
Zhu Z, Wang S X and Woodcock C E. 2015. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images. Remote Sensing of Environment, 159: 269-277 [DOI: 10.1016/j.rse.2014.12.014http://dx.doi.org/10.1016/j.rse.2014.12.014]
相关作者
相关机构