顾及林区植被穿透率的多源DEM数据精度评价
Accuracy evaluation of multi-source DEM data based on the analysis of vegetation-induced penetration rate in the forest area
- 2022年26卷第11期 页码:2268-2281
纸质出版日期: 2022-11-07
DOI: 10.11834/jrs.20210221
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-11-07 ,
扫 描 看 全 文
蔡士雪,岳林蔚,尹超,邱中航.2022.顾及林区植被穿透率的多源DEM数据精度评价.遥感学报,26(11): 2268-2281
Cai S X,Yue L W,Yin C and Qiu Z H. 2022. Accuracy evaluation of multi-source DEM data based on the analysis of vegetation-induced penetration rate in the forest area. National Remote Sensing Bulletin, 26(11):2268-2281
随着现代遥感观测技术的不断发展,目前已经有多个版本的公开高程数据集。然而,在林区,由于植被对电磁波的遮挡或吸收作用,遥感手段探测得到的高程不能反映真实的地表信息,存在系统偏差的影响。为了分析多源DEM产品在林区高程偏差的特性,本文选取了美国马里兰州和索诺马县为研究区域,对比不同地形、不同林区类型条件下雷达DEM产品SRTM1、TanDEM-X 90和光学DEM产品AW3D 30与裸地参考高程3DEP的差值,得到3类高程产品的林区穿透率,并结合林区类型、植被冠层高度、冠层覆盖度和坡度等辅助数据进行差异分析。结果表明,SRTM1、TanDEM-X 90和AW3D 30中,C波段雷达探测数据SRTM1的整体林区穿透率最大,尤其是在马里兰州常绿针叶林,其整体穿透率可达0.771;而基于X波段雷达观测的TanDEM-X 90和光学数据AW3D 30的林区穿透率相当。3类高程产品在针叶林中的林区穿透率大于在阔叶林中的林区穿透率,且林区穿透率均随着冠层覆盖度的增加而减弱,其中TanDEM-X 90和AW3D 30的林区穿透率减弱幅度较大。除探测波长影响外,主要原因是TanDEM-X 90和AW3D 30均由高分辨率数据采样得到,重采样前的高分辨率原始数据更容易检测到树木之间的开阔区域。此外,复杂的地形环境在一定程度上会降低高程数据产品的垂直精度,导致计算得到的林区穿透率偏低。因此,在林区对SRTM1、TanDEM-X 90和AW3D 30这3类高程产品进行应用时,应综合考虑传感器波段的穿透性、林区类型、冠层覆盖度以及坡度的影响,根据每个产品的林区穿透率去除植被冠层高度,以获取更加精确的地表信息。
With the development of modern remote sensing observation technology
there are several versions of public elevation datasets. However
due to the shielding effect or absorption of electromagnetic waves by dense vegetation in forest areas
the elevation obtained by remote sensing techniques is inevitably influenced by the systematic deviation. In this paper
the radar-derived DEM products (i.e.
SRTM1 and TanDEM-X 90) and optical-sensor based AW3D30 dataset were chosen to analyze the characteristics of elevation deviations of multi-source DEM products in forest areas. The Maryland and Sonoma County of the United States were selected as the study regions. Using the 3DEP as the reference of bare-ground elevation
the vegetation-induced penetration rates of the three elevation products in the areas with different terrain conditions and covered by various forest types were obtained. The results showed that the overall penetration rate of SRTM1 obtained through C-band radar detection is the largest among the three datasets
followed by TanDEM-X 90 and AW3D 30 with comparable penetration rates. In terms of forest types
the penetration rates in coniferous forests are greater than that in broad-leaved forest. Moreover
the forest penetration rate decreases with the increase of canopy coverage
especially for TanDEM-X 90 and AW3D 30. In addition to the influence of detection wavelength
the main reason is that both TanDEM-X 90 and AW3D 30 are sampled from high-resolution data
and the high-resolution raw data before resampling make it easier to detect the open area between trees. In addition
the complex terrain environment will decrease the vertical accuracy of DEM datasets
and result in relatively lower penetration rates. Based on the results
the vegetation-induced penetration rate was synthetically affected by multiple factors
including sensor’s working waveband
forest type
canopy coverage
and terrain slope. The canopy height should be removed for the elevation datasets considering different penetration power of vegetation to obtain more accurate surface information. This research is helpful in improving the accuracy of canopy height removal for elevation products
and it provides a scientific reference basis for users when selecting the appropriate elevation products in the applications.
SRTM1TanDEM-X 90AW3D 30林区穿透率精度评价
SRTM1TanDEM-X 90AW3D 30forest areapenetration rateaccuracy evaluation
Altunel A O. 2019. Evaluation of TanDEM-X 90 m digital elevation model. International Journal of Remote Sensing, 40(7): 2841-2854 [DOI: 10.1080/01431161.2019.1585593http://dx.doi.org/10.1080/01431161.2019.1585593]
Askne J I H, Persson H J and Ulander L M H. 2019. On the sensitivity of Tandem-X-Observations to boreal forest structure. Remote Sensing, 11(14):1644-1666 [DOI: 10.3390/rs11141644http://dx.doi.org/10.3390/rs11141644]
Bhang K J, Schwartz F W and Braun A. 2007. Verification of the vertical error in C-band SRTM DEM using ICESat and Landsat-7, Otter Tail County, MN. IEEE Transactions on Geoscience and Remote Sensing, 45(1): 36-44 [DOI: 10.1109/tgrs.2006.885401http://dx.doi.org/10.1109/tgrs.2006.885401]
Bourgine B and Baghdadi N. 2005. Assessment of C-band SRTM DEM in a dense equatorial forest zone. Comptes Rendus Geoscience, 337(14): 1225-1234 [DOI: 10.1016/j.crte.2005.06.006http://dx.doi.org/10.1016/j.crte.2005.06.006]
Carabajal C C and Harding D J. 2005. ICESat validation of SRTM C-band digital elevation models. Geophysical Research Letters, 32(22): L22S01 [DOI: 10.1029/2005GL023957http://dx.doi.org/10.1029/2005GL023957]
Carabajal C C and Harding D J. 2006. SRTM C-band and ICESat laser altimetry elevation comparisons as a function of tree cover and relief. Photogrammetric Engineering and Remote Sensing, 72(3): 287-298 [DOI: 10.14358/PERS.72.3.287http://dx.doi.org/10.14358/PERS.72.3.287]
Chen C F, Yang S, Li Y Y. 2020. Accuracy Assessment and Correction of SRTM DEM Using ICESat/GLAS Data under Data Coregistration. Remote Sensing, 12(20): 3435. [DOI: 10.3390/rs12203435http://dx.doi.org/10.3390/rs12203435]
Chen H N, Xu S F, Huang Y, Wang S J,Shu S, Yu B L and Wu J P. 2020. Vertical accuracy correction and analysis of ASTER GDEM V2 over Antarctic Glacier. Journal of Remote Sensing, 24(8): 1010-1022
陈昊楠, 许诗枫, 黄艳,王淑杰, 舒松, 余柏蒗, 吴健平. 2020. ASTER GDEM V2的南极冰川高程误差校正及精度分析. 遥感学报, 24(8): 1010-1022 [DOI:10.11834/jrs.20208361http://dx.doi.org/10.11834/jrs.20208361]
Dubayah R O, Swatantran A, Huang W, Duncanson L, Tang H, Johnson K, Dunne J O and Hurtt G C. 2017. CMS: LiDAR-Derived Biomass, Canopy Height and Cover, Sonoma County, California, 2013. Oak Ridge, Tennessee, USA: ORNL DAAC [DOI: 10.3334/ORNLDAAC/1523http://dx.doi.org/10.3334/ORNLDAAC/1523]
Farr T G, Rosen P A, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D and Alsdorf D. 2007. The shuttle radar topography mission. Reviews of Geophysics, 45(2): 361-403 [DOI: 10.1029/2005RG000183http://dx.doi.org/10.1029/2005RG000183]
Friedl M A, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A and Huang X M. 2010. MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114(1): 168-182 [DOI: 10.1016/j.rse.2009.08.016http://dx.doi.org/10.1016/j.rse.2009.08.016]
Goud G P S, Bhardwaj A. 2021. Estimation of Building Heights and DEM Accuracy Assessment Using ICESat-2 Data Products. Engineering Proceedings,10(1):37[DOI: 10.3390/ECSA-8-11442http://dx.doi.org/10.3390/ECSA-8-11442]
Grohmann C H. 2018. Evaluation of TanDEM-X DEMs on selected Brazilian sites: comparison with SRTM, ASTER GDEM and ALOS AW3D30. Remote Sensing of Environment, 212: 121-133 [DOI: 10.1016/j.rse.2018.04.043http://dx.doi.org/10.1016/j.rse.2018.04.043]
Hawker L, Neal J and Bates P. 2019. Accuracy assessment of the TanDEM-X 90 Digital Elevation Model for selected floodplain sites. Remote Sensing of Environment, 232(C): 361-375 [DOI: 10.1016/j.rse.2019.111319http://dx.doi.org/10.1016/j.rse.2019.111319]
Huang C Q, Yang L M, Wylie B K and Homer C G. 2001. A strategy for estimating tree canopy density using Landsat 7 ETM+ and high resolution images over large areas//Proceedings of the Third International Conference on Geospatial Information in Agriculture and Forestry. Denver, Colorado: Earth Resources Observation and Science (EROS) Center
Jin B F. 2012. Influencing factors and significance of the skewness coefficient in grain size analysis. Marine Sciences, 36(2): 129-135
金秉福. 2012. 粒度分析中偏度系数的影响因素及其意义. 海洋科学, 36(2): 129-135 [DOI: 10.1007/s11783-011-0280-zhttp://dx.doi.org/10.1007/s11783-011-0280-z]
Kenyi L, Dubayah R, Hofton M, Blair J B and Schardt M. 2007. Comparison of SRTM-NED data to LIDAR derived canopy metrics//2007 IEEE International Geoscience and Remote Sensing Symposium. Barcelona: IEEE: 2825-2829 [DOI: 10.1109/IGARSS.2007.4423431http://dx.doi.org/10.1109/IGARSS.2007.4423431]
Li P, Li Z H, Shi C and Liu J N. 2016. Quality evaluation of 1 arc second version SRTM DEM in China. Bulletin of Surveying and Mapping, (9): 24-28
李鹏, 李振洪, 施闯, 刘经南. 2016. 中国地区30 m分辨率SRTM质量评估. 测绘通报, (9): 24-28 [DOI:10.13474/j.cnki.11-2246.2016.0285http://dx.doi.org/10.13474/j.cnki.11-2246.2016.0285]
Miliaresis G and Delikaraoglou D. 2009. Effects of percent tree canopy density and DEM misregistration on SRTM/NED vegetation height estimates. Remote Sensing, 1(2): 36-49 [DOI: 10.3390/rs1020036http://dx.doi.org/10.3390/rs1020036]
Ni W J, Sun G Q, Zhang Z Y, Guo Z F and He Y T. 2014. Co-registration of two DEMs: impacts on forest height estimation from SRTM and NED at mountainous areas. IEEE Geoscience and Remote Sensing Letters, 11(1): 273-277 [DOI: 10.1109/LGRS.2013.2255580http://dx.doi.org/10.1109/LGRS.2013.2255580]
NOAA 2018. Vdatum[EB/OL]. National Oceanic and Atmospheric Administration. https://vdatum.noaa.govhttps://vdatum.noaa.gov
Rodríguez E, Morris C S and Belz J E. 2006. A global assessment of the SRTM performance. Photogrammetric Engineering and Remote Sensing, 72(3): 249-260 [DOI: 10.14358/PERS.72.3.249http://dx.doi.org/10.14358/PERS.72.3.249]
Shortridge A and Messina J. 2011. Spatial structure and landscape associations of SRTM error. Remote Sensing of Environment, 115(6): 1576-1587 [DOI: 10.1016/j.rse.2011.02.017http://dx.doi.org/10.1016/j.rse.2011.02.017]
Tachikawa T, Kaku M, Iwasaki A, Gesch D B, Oimoen M J, Zhang Z, Danielson J J, Krieger T, Curtis B, Haase J, Abrams M and Carabajal C. 2011. ASTER Global Digital Elevation Model Version 2 – Summary of Validation Results. Earth Resources Observation and Science (EROS) Center
Tang X M, Li S J, Li T, Gao Y D, Zhang S B, Chen Q F and Zhang X. 2021. Review on global digital elevation products. National Remote Sensing Bulletin, 25(1):167-181
唐新明, 李世金, 李涛, 高延东, 张书毕, 陈乾福, 张祥. 2021. 全球数字高程产品概述. 遥感学报,25(1): 167-181 [DOI: 10.11834/jrs.20210210http://dx.doi.org/10.11834/jrs.20210210]
Toutin T. 2002. Impact of terrain slope and aspect on radargrammetric DEM accuracy. ISPRS Journal of Photogrammetry and Remote Sensing, 57(3): 228-240 [DOI: 10.1016/S0924-2716(02)00123-5http://dx.doi.org/10.1016/S0924-2716(02)00123-5]
USGS 2019. 3DEP[EB/OL]. U.S. Geological Survey. https://viewer.nationalmap.gov/basichttps://viewer.nationalmap.gov/basic
Van N T G, McVicar T R, Li L T, Gallant J C and Yang Q K. 2008. The impact of misregistration on SRTM and DEM image differences. Remote Sensing of Environment, 112(5): 2430-2442 [DOI: 10.1016/j.rse.2007.11.003http://dx.doi.org/10.1016/j.rse.2007.11.003]
Wessel B, Huber M, Wohlfart C, Marschalk U, Kosmann D and Roth A. 2018. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS Journal of Photogrammetry and Remote Sensing, 139: 171-182 [DOI: 10.1016/j.isprsjprs.2018.02.017http://dx.doi.org/10.1016/j.isprsjprs.2018.02.017]
Yuan X Q, Li G Y, Gao X M, Zhang W J and Lu J. 2018. Evaluation of AW3D 30 m DSM data elevation quality and precision validation of typical region. Geomatics & Spatial Information Technology, 41(4): 98-101
袁小棋, 李国元, 高小明, 张文君, 禄兢. 2018. AW3D 30 m DSM数据质量分析及部分典型区域精度验证. 测绘与空间地理信息, 41(4): 98-101
Yue L W. 2017. Research on DEM Fusion Blending Multi-Source and Multi-Scale Elevation Data. Wuhan: Wuhan University
岳林蔚. 2017. 多源多尺度DEM数据融合方法与应用研究. 武汉: 武汉大学
Zhan L, Tang G A and Yang X. 2010. Evaluation of SRTM DEMs' elevation accuracy: a case study in Shaanxi Province. Geography and Geo-information Science, 26(1): 34-36
詹蕾, 汤国安, 杨昕. 2010. SRTM DEM高程精度评价. 地理与地理信息科学, 26(1): 34-36
Zhang J, Wang M Z and Hu Y F. 2021. Skewness and kurtosis analysis of cavitation noise for underwater vehicles. Technical Acoustics, 40(6):757-762
张俊, 王明洲, 胡友峰. 2021. 水下航行器空化噪声偏度和峰度分析. 声学技术, 40(6): 757-762 [DOI:10.16300/j.cnki.1000-3630.2021.06.003http://dx.doi.org/10.16300/j.cnki.1000-3630.2021.06.003]
Zhao X Q, Su Y J, Hu T Y, Chen L H, Gao S, Wang R, Jin S C and Guo Q H. 2018. A global corrected SRTM DEM product for vegetated areas. Remote Sensing Letters, 9(4): 393-402 [DOI: 10.1080/2150704X.2018.1425560http://dx.doi.org/10.1080/2150704X.2018.1425560]
Zhou Q M and Liu X J. 2004. Analysis of errors of derived slope and aspect related to DEM data properties. Computers and Geosciences, 30(4): 369-378 [DOI: 10.1016/j.cageo.2003.07.005http://dx.doi.org/10.1016/j.cageo.2003.07.005]
Zhu H C. 2003. A Research on Spatial Data Mining of Digital Elevation Models: A Case Study in the Loess Plateau of North Shaanxi Province. Xi’an: Northwest University
朱红春. 2003. 数字高程模型(DEM)空间数据挖掘研究——以在陕北黄土高原的实验为例. 西安: 西北大学 [DOI: 10.7666/d.y527587http://dx.doi.org/10.7666/d.y527587]
相关作者
相关机构