GF-5 DPC数据的云检测方法研究
Cloud detection algorithm based on GF-5 DPC data
- 2021年25卷第10期 页码:2053-2066
纸质出版日期: 2021-10-07
DOI: 10.11834/jrs.20210226
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-10-07 ,
扫 描 看 全 文
伟乐斯,尚华哲,胡斯勒图,马润,胡大海,朝克夫,司福祺,施建成.2021.GF-5 DPC数据的云检测方法研究.遥感学报,25(10): 2053-2066
Wei L S,Shang H Z,Husi L T,Ma R,Hu D H,Chao K F,Si F Q and Shi J C. 2021. Cloud detection algorithm based on GF-5 DPC data. National Remote Sensing Bulletin, 25(10):2053-2066
高分五号(GF-5)号卫星所搭载的大气多角度偏振探测仪(DPC)能够对地球进行多波段,多角度和的连续观测,其数据对研究全球大气云分布及云辐射反馈作用提供新的视角。本文通法国多角度偏振载荷POLDER(POLarization and Directionality of the Earth’s Reflectances)云检测算法为参考,结合DPC多波段反射率、偏振反射率、表观压强等信息开发了一个适用于DPC的云检测算法。算法主要分为3个部分:首先是阈值方法对云像元进行检测,同时引入表观压强对不同高度的云(如卷云、层积云等)进行进一步的条件约束,然后利用865 nm波段偏振反射率对海表反射的太阳耀斑区进行识别,修正了反射率阈值识别云像元时受到的太阳耀斑干扰。为了验证算法的准确性,利用2018-10-01的MODIS的MOD06云掩码产品与本文云检测算法结果进行定性分析,从目视判读结果可以看出本文云检测结果与MOD06产品具有较高的吻合度;随后又利用2018-10-01—04的CALIPSO-VFM数据与本文云检测结果和MYDO6云掩码产品进行定量分析,分别计算了中低纬度区域(60°N—60°S)的云/晴空像元命中率和云/晴空像元错误预报率,计算结果显示算法云命中率均值相较MYD06云掩码产品高出13.501%的前提下云错误预报率仅高出3.561%,可表明该算法在全球中低纬度区域有着良好的云检测效果。本文提出的云检测算法,可为后续DPC的云参数、水汽、气溶胶等研究提供重要数据支撑。
Clouds cover 50 to 70 percent of the earth’s surface and are an important factor in the balance of atmospheric radiation and climate change. The Directional Polarimetric Camera (DPC) carried by the GaoFen-5 satellite can continuously observe the earth in multiple bands
multiple angles
and high spatial resolution. Its data are useful for studying global atmospheric cloud distribution
and cloud radiation feedback provides a new perspective.
This study uses the French multiangle polarization load polarization and directionality of the earth’s reflectance (POLDER) cloud recognition algorithm as a reference
and combines DPC multiband reflectivity
polarization reflectivity
apparent pressure
and other information to develop a cloud detection algorithm suitable for DPC. The algorithm is mainly divided into three parts. First
the threshold method is used to detect cloud pixels
and the apparent pressure is introduced to further restrict the conditions of clouds (such as cirrus and stratocumulus) at different heights. Then
the 865 nm band polarization reflectance is used to identify the solar flare area reflected by the sea surface
and the solar flare interference is amended when the reflectance threshold is used to identify cloud pixels.
The MOD06 cloud mask product of MODIS on October 1
2018 was compared with the results of the proposed cloud recognition algorithm to verify the accuracy of the algorithm. The cloud recognition results were in good agreement with the MOD06 products. The CALIPSO-VFM data from October 01 to 04
2018
the cloud detection results
and the MYDO6 cloud mask product were selected to calculate the cloud/clear pixels hit rate and false alarm rate to further quantitatively verify the accuracy of the cloud detection algorithm.
The calculation results show that the average cloud hit rate of the algorithm is 13.501% higher than that of the MYD06 cloud mask product. The cloud error prediction rate is only 3.561% higher than that of the MYD06 cloud mask products
thereby indicating cloud detection effect. The proposed cloud detection algorithm can provide important data support for subsequent DPC research on cloud parameters
water vapor
and aerosols.
大气遥感云检测表观压强多角度偏振GF-5DPC
atmospheric remote sensingcloud detectionapparent pressuremulti-angular polarizationGF-5DPC
Ackerman S, Frey R, Strabala K, Liu Y H, Gumley L, Baum B and Menzel P. 2010. Discriminating clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35). Version 6.1.
Anyamba A and Tucker C J. 2005. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. Journal of Arid Environments, 63(3): 596-614 [DOI: 10.1016/j.jaridenv.2005.03.007http://dx.doi.org/10.1016/j.jaridenv.2005.03.007]
Bréon F M. 2005. With help from the CNES parasol team, parasol level-1 product data form at and user manual.
Bréon F M and Bouffiés S. 1996. Land surface pressure estimate from measurements in the oxygen a absorption band. Journal of Applied Meteorology and Climatology, 35(1): 69-77. [DOI: 10.1175/1520-0450 (1996) 035<0069:lspefm>2.0.co;2http://dx.doi.org/10.1175/1520-0450(1996)035<0069:lspefm>2.0.co;2]
Bréon F M and Colzy S. 1999. Cloud detection from the spaceborne POLDER instrument and validation against surface synoptic observations. Journal of Applied Meteorology and Climatology, 38(6): 777-785 [DOI: 10.1175/1520-0450(1999)038<0777:CDFTSP>2.0.CO;2http://dx.doi.org/10.1175/1520-0450(1999)038<0777:CDFTSP>2.0.CO;2]
Buriez J C, Parol F, Cornet C and Doutriaux-Boucher M. 2005. An improved derivation of the top-of-atmosphere albedo from POLDER/ADEOS-2: narrowband albedos. Journal of Geophysical Research: Atmospheres, 110(D5): D05202 [DOI: 10.1029/2004jd005243http://dx.doi.org/10.1029/2004jd005243]
Buriez J C, Vanbauce C, Parol F, Goloub P, Herman M, Bonnel B, Fouquart Y, Couvert P and Seze G. 1997. Cloud detection and derivation of cloud properties from POLDER. International Journal of Remote Sensing, 18(13): 2785-2813 [DOI: 10.1080/014311697217332http://dx.doi.org/10.1080/014311697217332]
Chen Z T, Sun X B and Qiao Y L. 2018. Cloud detection over ocean from PARASOL/POLDER3 satellite data.Journal of Remote sensing, 22(6): 996-1004
陈震霆, 孙晓兵, 乔延利. 2018. PARASOL/POLDER3卫星数据的海洋上空云检测. 遥感学报, 22(6): 996-1004
Gu X F, Chen X F, Cheng T H, Li Z Q, Yu T, Xie D H and Xu H. 2011. In-flight polarization calibration methods of directional polarized remote sensing camera DPC. Acta Physica Sinica, 60(7): 070702
顾行发, 陈兴峰, 程天海, 李正强, 余涛, 谢东海, 许华. 2011. 多角度偏振遥感相机DPC在轨偏振定标. 物理学报, 60(7): 070702 [DOI: 10.7498/aps.60.070702http://dx.doi.org/10.7498/aps.60.070702]
Husltu, Bao Y H, Xu J, Qing S and Bao G. 2015. Radiative properties of cirrus clouds based on hexagonal and spherical ice crystals models. Spectroscopy and Spectral Analysis, 35(5): 1165-1168
胡斯勒图, 包玉海, 许健, 青松, 包钢. 2015. 基于六角形和球形冰晶模型的卷云辐射特征研究. 光谱学与光谱分析, 35(5): 1165-1168) [DOI: 10.3964/j.issn.1000-0593(201505-1165-04]
Husltu, Shi J C, Li M, Wang T X, Shang H Z, Lei Y H, Ji D B, Wen J G, Yang K and Chen L F. 2020. A review of the estimation of downward surface shortwave radiation based on satellite data: methods, progress and problems. Science Sinica (Terrae), 50(7): 887-902
胡斯勒图, 施建成, 李明, 王天星, 尚华哲, 雷永荟, 姬大彬, 闻建光, 阳坤, 陈良富. 2020. 基于卫星数据的地表下行短波辐射估算: 方法、进展及问题. 中国科学(地球科学), 50(7): 887-902 [DOI: 10.1360/SSTe-2019-0032http://dx.doi.org/10.1360/SSTe-2019-0032]
Letu H, Nagao T M, Nakajima T Y and Matsumae Y. 2014. Method for validating cloud mask obtained from satellite measurements using ground-based sky camera. Applied Optics, 53(31): 7523-7533 [DOI: 10.1364/AO.53.007523http://dx.doi.org/10.1364/AO.53.007523]
Li X H, Shen H F, Zhang L P, Zhang H Y, Yuan Q Q and Yang G. 2014. Recovering quantitative remote sensing products contaminated by thick clouds and shadows using multitemporal dictionary learning. IEEE Transactions on Geoscience and Remote Sensing, 52(11): 7086-7098. [DOI: 10.1109/TGRS.2014.2307354http://dx.doi.org/10.1109/TGRS.2014.2307354]
Li X H, Wang L Y, Cheng Q, Wu P H, Gan W X and Fang L N. 2019. Cloud removal in remote sensing images using nonnegative matrix factorization and error correction. ISPRS Journal of Photogrammetry and Remote Sensing, 148: 103-113 [DOI: 10.1016/j.isprsjprs.2018.12.013http://dx.doi.org/10.1016/j.isprsjprs.2018.12.013]
Li Z Q, Hou W Z, Hong J, Zheng F X, Luo D G, Wang J, Gu X F and Qiao Y L. 2018. Directional polarimetric camera (DPC): monitoring aerosol spectral optical properties over land from satellite observation. Journal of Quantitative Spectroscopy and Radiative Transfer, 218: 21-37 [DOI: 10.1016/j.jqsrt.2018.07.003http://dx.doi.org/10.1016/j.jqsrt.2018.07.003]
Liu Z G and Zhou G H. 2007. Polarization of sun glint. Journal of Infrared And Millimeter Waves, 26(5): 362-365
刘志刚, 周冠华. 2007. 太阳耀光的偏振分析. 红外与毫米波学报, 26(5): 362-365 [DOI: 10.3321/j.issn:1001-9014.2007.05.011http://dx.doi.org/10.3321/j.issn:1001-9014.2007.05.011]
Luo Y J, Zhao Y S, Hu X L and Wu T X. 2006. Polarization and sun glitter's peeling-off of multi-angle remote sensing. Optical Technique, 32(2): 205-208
罗杨洁, 赵云升, 胡新礼, 吴太夏. 2006. 偏振与多角度遥感中的太阳耀光剥离. 光学技术, 32(2): 205-208 [DOI: 10.3321/j.issn:1002-1582.2006.02.033http://dx.doi.org/10.3321/j.issn:1002-1582.2006.02.033]
Ma R, Husltu, Shang H Z, A N R, He J, Han X and Wang Z M. 2019. Estimation of downward surface shortwave radiation from Himawari-8 atmospheric products. Journal of Remote Sensing, 23(5): 924-934
马润, 胡斯勒图, 尚华哲, 阿娜日, 赫杰, 韩旭, 王子明. 2019. 基于葵花-8卫星大气产品的地表下行短波辐射计算. 遥感学报, 23(5): 924-934 [DOI: 10.11834/jrs.20198033http://dx.doi.org/10.11834/jrs.20198033]
Mace G G, Jakob C and Moran K P. 1998. Validation of hydrometeor occurrence predicted by the ECMWF Model using millimeter wave radar data. Geophysical Research Letters, 25(10): 1645-1648 [DOI: 10.1029/98gl00845http://dx.doi.org/10.1029/98gl00845]
Mason B J. 2002. The role of clouds in the radiative balance of the atmosphere and their effects on climate. Contemporary Physics, 43(1): 1-11 [DOI: 10.1080/00107510110084075http://dx.doi.org/10.1080/00107510110084075]
Saunders R W and Kriebel K T. 1988. An improved method for detecting clear sky and cloudy radiances from AVHRR data. International Journal of Remote Sensing, 9(1): 123-150. [DOI: 10.1080/01431168808954841http://dx.doi.org/10.1080/01431168808954841]
Shang H Z, Chen L F, Letu H S, Zhao M, Li S S and Bao S H. 2017. Development of a daytime cloud and haze detection algorithm for Himawari-8 satellite measurements over central and eastern China. Journal of Geophysical Research, 122(6): 3528-3543. [DOI: https://doi.org/10.1002/2016JD025659https://doi.org/10.1002/2016JD025659]
Shang H Z, Letu H S, Nakajima T Y, Wang Z M, Ma R, Wang T X, Lei Y H, Ji D B, Li S S and Shi J C. 2018. Diurnal cycle and seasonal variation of cloud cover over the Tibetan Plateau as determined from Himawari-8 new-generation geostationary satellite data. Scientific Reports, 8(1): 1105 [DOI: 10.1038/s41598-018-19431-whttp://dx.doi.org/10.1038/s41598-018-19431-w]
Sun Y Z, Jiang G W, Li Y D, Yang Y, Dai H S, He J, Ye Q H, Cao Q, Dong C Z, Zhao S H and Wang W H. 2018. GF-5 satellite: Overview and application prospects. Spacecraft Recovery and Remote Sensing, 39(3): 1-13
孙允珠, 蒋光伟, 李云端, 杨勇, 代海山, 何军, 叶擎昊, 曹琼, 董长哲, 赵少华, 王维和. 2018. “高分五号”卫星概况及应用前景展望. 航天返回与遥感, 39(3): 1-13 [DOI: 10.3969/j.issn.1009-8518.2018.03.001http://dx.doi.org/10.3969/j.issn.1009-8518.2018.03.001]
Winker D M, Hostetler C A, Vaughan M A and Omar A H. 2006. CALIOP algorithm theoretical basis document. Part 1: CALIOP instrument, and algorithms overview[EB/OL]. Release2.0. http://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202.Part1_v2-Overview.pdfhttp://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202.Part1_v2-Overview.pdf [2020-06-27]
Zeng S, Parol F, Riedi J, Cornet C and Thieuleux F. 2011. Examination of POLDER/PARASOL and MODIS/Aqua cloud fractions and properties representativeness. Journal of Climate, 24(16): 4435-4450 [DOI: 10.1175/2011JCLI3857.1http://dx.doi.org/10.1175/2011JCLI3857.1]
Zhao M J, Si F Q, Wang Y, Zhou H J, Wang S M, Jiang Y and Liu W Q. 2020. First Year on-orbit calibration of the chinese environmental trace gas monitoring instrument onboard GaoFen-5. IEEE Transactions on Geoscience and Remote Sensing, 58(12): 8531-8540 [DOI: 10.1109/TGRS.2020.2988573http://dx.doi.org/10.1109/TGRS.2020.2988573]
相关作者
相关机构