夜间灯光遥感对城市发展类动能与相似性评估
Kinetic energy assessment and similarity analysis of urban development based on NPP-VIIRS nighttime light remote sensing
- 2021年25卷第5期 页码:1187-1200
纸质出版日期: 2021-05-07
DOI: 10.11834/jrs.20210228
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2021-05-07 ,
扫 描 看 全 文
刘冰洁,陈佐旗,余柏蒗,杨成术,邱炳文,涂越.2021.夜间灯光遥感对城市发展类动能与相似性评估.遥感学报,25(5): 1187-1200
Liu B J,Chen Z Q,Yu B L,Yang C S,Qiu B W and Tu Y. 2021. Kinetic energy assessment and similarity analysis of urban development based on NPP-VIIRS nighttime light remote sensing. National Remote Sensing Bulletin, 25(5):1187-1200
评估城市发展水平与制定城市规划和城市发展政策息息相关。已有研究表明人口、国内生产总值(GDP)等统计数据和夜间灯光遥感数据能够用来衡量城市发展水平,但大多研究只关注城市发展总量,忽视了发展速度对城市发展的影响。因此,本文基于2012年—2019年Suomi NPP-VIIRS(Suomi National Polar-Orbiting Partnership-Visible Infrared Imaging Radiometer Suite)夜间灯光遥感数据,提出了兼顾城市发展水平和增速的夜间灯光类动能指数用于测度城市发展类动能;利用动态时间规整DTW(Dynamic Time Warping)算法构建了城市发展类动能相似性检测分析框架,并基于相似性检测结果对全国328个城市进行了等级划分。相较于2019年第一财经公布的一至五线城市,本文城市等级划分结果表明,在同一等级中的城市发展更为相似和合理,也证明了城市发展类动能更有利于城市发展水平的评估;以长江三角洲城市群为例,进一步验证了城市发展类动能和基于DTW相似性检测方法用于评估城市群发展情况与合理性的潜力。综上所述,基于夜间灯光遥感的城市发展类动能估算与相似性分析方法能够较好地评估城市发展水平,为城市分级与城市群发展评估提供科学依据。
Urban development assessment is helpful for urban planning and urban development policies. Census
survey
and nighttime light remote sensing data have been widely used to measure the urban development in previous research. However
most studies only focused on the size of urban development in a specific period and few of them have simultaneously considered the size and speed of urban development. A model that considers both the size and speed of urban development is necessary for evaluating the level of urban development
which is a dynamic process.
On the basis of the nighttime light data of Suomi NPP-VIIRS from 2012 to 2019
the nighttime light kinetic energy index is proposed to measure the kinetic energy of urban development by considering the size and speed of urban development. Then
the Dynamic Time Warping (DTW) algorithm was utilized to measure the DTW distance using the nighttime light kinetic energy index. Finally
328 cities in China were classified according to the DTW distance.
Numerically
the nighttime light kinetic energy index in most cities increased significantly from 2013 to 2019
especially in the southeast coastal areas and central regions
and that in the northwest area has also increased greatly. In terms of spatial distribution
the original urban agglomerations composed of cities with high night-time lighting kinetic energy index values expanded from 2013 to 2019. The 328 cities were divided into five levels. The classified levels are more comprehensive and reasonable than the city rank released by First Finance in 2019. The Yangtze River Delta urban agglomeration was taken an example to analyze the synergy of urban agglomeration development
revealing that Tongling
Chizhou
and other cities in Anhui province still has a weak connection with the Yangtze River Delta urban agglomeration. The development of a hinterland city (such as Wuhu
Ma'anshan) is recommended to link these cities.
遥感城市发展水平NPP-VIIRS夜间灯光类动能DTW距离
remote sensingurban development levelNPP-VIIRSnighttime light kinetic energyDTW distance
Arthur D and Vassilvitskii S. 2007. K-means++: the advantages of careful seeding//Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. New Orleans, Louisiana: ACM: 1027-1035
Cao L Q, Li P X and Zhang L P. 2009. Urban population estimation based on the DMSP/OLS night-time satellite data——A case of Hubei province. Remote Sensing Information, (1): 83-87
曹丽琴, 李平湘, 张良培. 2009. 基于DMSP/OLS夜间灯光数据的城市人口估算——以湖北省各县市为例. 遥感信息, (1): 83-87 [DOI: 10.3969/j.issn.1000-3177.2009.01.016]
Cao X, Chen J, Imura H and Higashi O. 2009. A SVM-based method to extract urban areas from DMSP-OLS and SPOT VGT data. Remote Sensing of Environment, 113(10): 2205-2209 [DOI: 10.1016/j.rse.2009.06.001http://dx.doi.org/10.1016/j.rse.2009.06.001]
Cao Z Y, Wu Z F, Kuang Y Q, Huang N S and Wang M. 2016. Coupling an intercalibration of radiance-calibrated nighttime light images and land use/cover data for modeling and analyzing the distribution of GDP in Guangdong, China. Sustainability, 8(2): 108 [DOI: 10.3390/su8020108http://dx.doi.org/10.3390/su8020108]
Chen Y M, Liu X P, Li X, Liu X J, Yao Y, Hu G H, Xu X C and Pei F S. 2017a. Delineating urban functional areas with building-level social media data: a dynamic time warping (DTW) distance based k-medoids method. Landscape and Urban Planning, 160(1): 48-60 [DOI: 10.1016/j.landurbplan.2016.12.001http://dx.doi.org/10.1016/j.landurbplan.2016.12.001]
Chen Y B, Zheng Z H, Wu Z F and Qian Q L. 2019. Review and prospect of application of nighttime light remote sensing data. Progress in Geography, 38(2): 205-223
陈颖彪, 郑子豪, 吴志峰, 千庆兰. 2019. 夜间灯光遥感数据应用综述和展望. 地理科学进展, 38(2): 205-223 [DOI: 10.18306/dlkxjz.2019.02.005http://dx.doi.org/10.18306/dlkxjz.2019.02.005]
Chen Z Q. 2017. A Multiscale Analysis on Urban Area and Spatial Structure based on Nighttime Light Data. Shanghai: East China Normal University
陈佐旗. 2017. 基于多源夜间灯光遥感影像的多尺度城市空间形态结构分析. 上海: 华东师范大学
Chen Z Q, Yu B L, Song W, Liu H X, Wu Q S, Shi K F and Wu J P. 2017b. A new approach for detecting urban centers and their spatial structure with nighttime light remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 55(11): 6305-6319 [DOI: 10.1109/TGRS.2017.2725917http://dx.doi.org/10.1109/TGRS.2017.2725917]
Chen Z Q, Yu B L, Zhou Y Y, Liu H X, Yang C S, Shi K F and Wu J P. 2019. Mapping global urban areas From 2000 to 2012 using time-series nighttime light data and MODIS products. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(4): 1143-1153 [DOI: 10.1109/JSTARS.2019.2900457http://dx.doi.org/10.1109/JSTARS.2019.2900457]
Croft T A. 1978. Nighttime images of the earth from space. Scientific American, 239(1): 86-101 [DOI: 10.1038/scientificamerican0778-86http://dx.doi.org/10.1038/scientificamerican0778-86]
Elvidge C D, Baugh K E, Kihn E A, Kroehl H W, Davis E R and Davis C W. 1997. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. International Journal of Remote Sensing, 18(6): 1373-1379 [DOI: 10.1080/014311697218485http://dx.doi.org/10.1080/014311697218485]
Elvidge C D, Baugh K, Zhizhin M, Hsu F C and Ghosh T. 2017. VIIRS night-time lights. International Journal of Remote Sensing, 38(21): 5860-5879 [DOI: 10.1080/01431161.2017.1342050http://dx.doi.org/10.1080/01431161.2017.1342050]
Gao Y H, Gu Y H, Qiao X N, Song X H, Ye R W and Sun X. 2017. Study on extracting urban area in Nanjing based on DMSP/OLS nighttime light data. Science of Surveying and Mapping, 42(6): 93-98, 154
高亚红, 顾羊羊, 乔旭宁, 宋雪桦, 叶润武, 孙旭. 2017. 基于夜间灯光数据的南京城镇用地提取. 测绘科学, 42(6): 93-98, 154 [DOI: 10.16251/j.cnki.1009-2307.2017.06.017http://dx.doi.org/10.16251/j.cnki.1009-2307.2017.06.017]
Gu S Z. 1993. Analysis on measurement of urbanization in China. North-West Population, (2): 1-7
辜胜阻. 1993. 中国城镇化度量研究. 西北人口, (2): 1-7 [DOI: 10.15884/j.cnki.issn.1007-0672.1993.02.001]
Guo W, Lu D S, Wu Y L and Zhang J X. 2015. Mapping impervious surface distribution with integration of SNNP VIIRS-DNB and MODIS NDVI data. Remote Sensing, 7(9): 12459-12477 [DOI: 10.3390/rs70912459http://dx.doi.org/10.3390/rs70912459]
He C Y, Shi P J, Li J G, Chen J, Pan Y Z, Li J, Zhuo L and Ichinose Toshiaki. 2006. Restoring urbanization process in China in the 1990s by using non-radiance-calibrated DMSP/OLS nighttime light imagery and statistical data. Chinese Science Bulletin, 51(7): 856-861
何春阳, 史培军, 李景刚, 陈晋, 潘耀忠, 李京, 卓莉, 一之瀬俊明. 2006. 基于DMSP/OLS夜间灯光数据和统计数据的中国大陆20世纪90年代城市化空间过程重建研究. 科学通报, 51(7): 856-861 [DOI: 10.3321/j.issn:0023-074X.2006.07.017http://dx.doi.org/10.3321/j.issn:0023-074X.2006.07.017]
Henderson J V, Storeygard A and Weil D N. 2012. Measuring economic growth from outer space. American Economic Review, 102(2): 994-1028 [DOI: 10.1257/aer.102.2.994http://dx.doi.org/10.1257/aer.102.2.994]
Henderson V. 2003. The urbanization process and economic growth: the so-what question. Journal of Economic Growth, 8(1): 47-71 [DOI: 10.1023/A:1022860800744http://dx.doi.org/10.1023/A:1022860800744]
Hu Y F, Zhao G H and Zhang Q L. 2018. Spatial distribution of population data based on nighttime light and LUC data in the Sichuan-Chongqing region. Journal of Geo-Information Science, 20(1): 68-78
胡云锋, 赵冠华, 张千力. 2018. 基于夜间灯光与LUC数据的川渝地区人口空间化研究. 地球信息科学学报, 20(1): 68-78 [DOI: 10.12082/dqxxkx.2018.170224http://dx.doi.org/10.12082/dqxxkx.2018.170224]
Huang Y X. 2016. Spatialization of Population Using Nighttime Light Remote Sensing Images and Social Sensing Data. Shanghai: East China Normal University
黄益修. 2016. 基于夜间灯光遥感影像和社会感知数据的人口空间化研究. 上海: 华东师范大学
Imhoff M L, Lawrence W T, Elvidge C D, Paul T, Levine E, Privalsky M V and Brown V. 1997. Using nighttime DMSP/OLS images of city lights to estimate the impact of urban land use on soil resources in the United States. Remote Sensing of Environment, 59(1): 105-117 [DOI: 10.1016/S0034-4257(96)00110-1http://dx.doi.org/10.1016/S0034-4257(96)00110-1]
Jiang B, Yin J J and Liu Q L. 2015. Zipf’s law for all the natural cities around the world. International Journal of Geographical Information Science, 29(3): 498-522 [DOI: 10.1080/13658816.2014.988715http://dx.doi.org/10.1080/13658816.2014.988715]
Kodinariya T M and Makwana P R. 2013. Review on determining of cluster in K-means clustering. International Journal of Advance Research in Computer Science and Management Studies, 1(6): 90-95
Li X, Chen Z J, Wu J X, Wang W Y, Qu L A, Zhou C and Han X F. 2017. Gridding methods of city permanent population based on night light data and spatial regression models. Journal of Geo-Information Science, 19(10): 1298-1305
李翔, 陈振杰, 吴洁璇, 汪文洋, 曲乐安, 周琛, 韩肖锋. 2017. 基于夜间灯光数据和空间回归模型的城市常住人口格网化方法研究. 地球信息科学学报, 19(10): 1298-1305 [DOI: 10.3724/SP.J.1047.2017.01298http://dx.doi.org/10.3724/SP.J.1047.2017.01298]
Li X, Xu H M, Chen X L and Li C. 2013. Potential of NPP-VIIRS nighttime light imagery for modeling the regional economy of China. Remote Sensing, 5(6): 3057-3081 [DOI: 10.3390/rs5063057http://dx.doi.org/10.3390/rs5063057]
Li Z G, Hu D Y, Li J H and Cen J. 2016. Simulation and spatialization of GDP in poverty areas based on night light imagery. Remote Sensing for Land and Resources, 28(2): 168-174
李宗光, 胡德勇, 李吉贺, 岑建. 2016. 基于夜间灯光数据的连片特困区GDP估算及其空间化. 国土资源遥感, 28(2): 168-174 [DOI: 10.6046/gtzyyg.2016.02.26http://dx.doi.org/10.6046/gtzyyg.2016.02.26]
Liang H D, Guo Z Y, Wu J P and Chen Z Q. 2020. GDP spatialization in Ningbo City based on NPP/VIIRS night-time light and auxiliary data using random forest regression. Advances in Space Research, 65(1): 481-493 [DOI: 10.1016/j.asr.2019.09.035http://dx.doi.org/10.1016/j.asr.2019.09.035]
Lo C P. 2001. Modeling the population of China using DMSP operational linescan system nighttime data. Photogrammetric Engineering and Remote Sensing, 67(9): 1037-1047
Müller M. 2007. Dynamic time warping//Information Retrieval for Music and Motion. Berlin, Heidelberg: Springer: 69-84 [DOI: 10.1007/978-3-540-74048-3_4http://dx.doi.org/10.1007/978-3-540-74048-3_4]
Ma T, Zhou C H, Pei T, Haynie S and Fan J F. 2014. Responses of Suomi-NPP VIIRS-derived nighttime lights to socioeconomic activity in China’s cities. Remote Sensing Letters, 5(2): 165-174 [DOI: 10.1080/2150704X.2014.890758http://dx.doi.org/10.1080/2150704X.2014.890758]
Niennattrakul V and Ratanamahatana C A. 2007. On clustering multimedia time series data using k-means and dynamic time warping//2007 International Conference on Multimedia and Ubiquitous Engineering. Seoul, Korea (South): IEEE: 733-738 [DOI: 10.1109/MUE.2007.165http://dx.doi.org/10.1109/MUE.2007.165]
Northam R M. 1979. Urban Geography. New York: John Wiley and Sons Inc
Ruan A Q, Liu S F, Fang Z G and Xu X M. 2006. Study on Development Kinetic Energy of Chinese Industry and Measure Model of Energy. 2006 6th World Congress on Intelligent Control and Automation, (1): 718-722 [DOI: 10.1109/WCICA.2006.1712436http://dx.doi.org/10.1109/WCICA.2006.1712436]
Sharma R C, Tateishi R, Hara K, Gharechelou S and Iizuka K. 2016. Global mapping of urban built-up areas of year 2014 by combining MODIS multispectral data with VIIRS nighttime light data. International Journal of Digital Earth, 9(10): 1004-1020 [DOI: 10.1080/17538947.2016.1168879http://dx.doi.org/10.1080/17538947.2016.1168879]
Shen C. 1997. A Preliminary Study on Calculation of Urbanization Level. Urban Planning, (1):22
沈迟. 1997. 关于城市化水平计算方法的探讨. 城市规划, (1): 22
Shi K F, Yu B L, Huang Y X, Hu Y J, Yin B, Chen Z Q, Chen L J and Wu J P. 2014. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: a comparison with DMSP-OLS data. Remote Sensing, 6(2): 1705-1724 [DOI: 10.3390/rs6021705http://dx.doi.org/10.3390/rs6021705]
Sutton P. 1997. Modeling population density with night-time satellite imagery and GIS. Computers, Environment and Urban Systems, 21(3/4): 227-244 [DOI: 10.1016/s0198-9715(97)01005-3http://dx.doi.org/10.1016/s0198-9715(97)01005-3]
Sutton P C and Costanza R. 2002. Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation. Ecological Economics, 41(3): 509-527 [DOI: 10.1016/S0921-8009(02)00097-6http://dx.doi.org/10.1016/S0921-8009(02)00097-6]
Wang X T, Sutton P C and Qi B X. 2019. Global mapping of GDP at 1 km2 using VIIRS nighttime satellite imagery. ISPRS International Journal of Geo-Information, 8(12): 580 [DOI: 10.3390/ijgi8120580http://dx.doi.org/10.3390/ijgi8120580]
Wu J S, Li S and Zhang X W. 2018. Research on saturation correction for long-time series of DMSP-OLS nighttime light dataset in China. Journal of Remote Sensing, 22(4): 621-632
吴健生, 李双, 张曦文. 2018. 中国DMSP-OLS长时间序列夜间灯光遥感数据饱和校正研究. 遥感学报, 22(4): 621-632 [DOI: 10.11834/jrs.20187174http://dx.doi.org/10.11834/jrs.20187174]
Wu Y X and Zhang D H. 2005. The comprehensive evaluation and empirical analysis on the urbanization level. Research on Economics and Management, (8): 66-69
吴艳霞, 张道宏. 2005. 城市发展水平的综合评价及实证分析. 经济与管理研究, (8): 66-69 [DOI: 10.3969/j.issn.1000-7636.2005.08.016]
You X J and Wei S Q. 2012. A comparative study on economic kinetic energy of Fujian and Taiwan. Human Geography, 27(5): 110-114
游小珺, 韦素琼. 2012. 闽台经济发展动能测算比较. 人文地理, 27(5): 110-114 [DOI: 10.13959/j.issn.1003-2398.2012.05.017http://dx.doi.org/10.13959/j.issn.1003-2398.2012.05.017]
Yu B L, Lian T, Huang Y X, Yao S J, Ye X Y, Chen Z Q, Yang C S and Wu J P. 2019. Integration of nighttime light remote sensing images and taxi GPS tracking data for population surface enhancement. International Journal of Geographical Information Science, 33(4): 687-706 [DOI: 10.1080/13658816.2018.1555642http://dx.doi.org/10.1080/13658816.2018.1555642]
Yu B L, Tang M, Wu Q S, Yang C S, Deng S Q, Shi K F, Peng C, Wu J P and Chen Z Q. 2018. Urban built-up area extraction from log-transformed NPP-VIIRS nighttime light composite data. IEEE Geoscience and Remote Sensing Letters, 15(8): 1279-1283 [DOI: 10.1109/LGRS.2018.2830797http://dx.doi.org/10.1109/LGRS.2018.2830797]
Zhang H H. 2003 Lifting the economical capacity lend of Yangtze Delta area. Journal of Social Sciences, (4): 17-21 (张颢瀚. 2003. 提升长江三角洲的经济能级. 社会科学, (4): 17-21) [DOI: 10.3969/j.issn.0257-5833.2003.04.002http://dx.doi.org/10.3969/j.issn.0257-5833.2003.04.002]
Zhao M and Cheng W M. 2015. Overview of researches based on urban expansion via DMSP/OLS night-time light data. Geomatics and Spatial Information Technology, (3): 64-68
赵敏, 程维明. 2015. 基于DMSP/OLS夜间灯光数据的城市空间扩展研究综述. 测绘与空间地理信息, (3): 64-68 [DOI: 10.3969/j.issn.1672-5867.2015.03.021]
Zheng Z H, Chen Y B, Wu Z F and Zhang Q F. 2018. Method to reduce saturation of DMSP/OLS nighttime light data based on UNL. Journal of Remote Sensing, 22(1): 161-173
郑子豪, 陈颖彪, 吴志峰, 张棋斐. 2018. 单元路网长度的DMSP/OLS夜间灯光数据去饱和方法. 遥感学报, 22(1): 161-173 [DOI: 10.11834/jrs.20186478http://dx.doi.org/10.11834/jrs.20186478]
Zhou Y Y, Smith S J, Zhao K G, Imhoff M, Thomson A, Bond-Lamberty B, Asrar G R, Zhang X S, He C Y and Elvidge C D. 2015. A global map of urban extent from nightlights. Environmental Research Letters, 10(5): 054011 [DOI: 10.1088/1748-9326/10/5/054011http://dx.doi.org/10.1088/1748-9326/10/5/054011]
Zhou Y X. 1982. The laws of the relationalship between urbanization and GDP. Population and Economics, (1): 28-33
周一星. 1982. 城市化与国民生产总值关系的规律性探讨. 人口与经济, (1): 28-33
Zhu X B, Ma M G, Yang H and Ge W. 2017. Modeling the spatiotemporal dynamics of gross domestic product in China using extended temporal coverage nighttime light data. Remote Sensing, 9(6): 626 [DOI: 10.3390/rs9060626http://dx.doi.org/10.3390/rs9060626]
Zhuo L, Ichinose T, Zheng J, Chen J, Shi P J and Li X. 2009. Modelling the population density of China at the pixel level based on DMSP/OLS non-radiance-calibrated night-time light images. International Journal of Remote Sensing, 30(4): 1003-1018 [DOI: 10.1080/01431160802430693http://dx.doi.org/10.1080/01431160802430693]
相关作者
相关机构