卫星高度计融合产品的研发综述
Review on the research and development of merged satellite altimeter products
- 2022年26卷第12期 页码:2473-2485
纸质出版日期: 2022-12-07
DOI: 10.11834/jrs.20210241
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-12-07 ,
扫 描 看 全 文
刘磊,蒋星亮,李志锦,费建芳,吴新荣,王辉赞,叶芳,张福颖,史文丽.2022.卫星高度计融合产品的研发综述.遥感学报,26(12): 2473-2485
Liu L,Jiang X L,Li Z J,Fei J F,Wu X R,Wang H Z,Ye F,Zhang F Y and Shi W L. 2022. Review on the research and development of merged satellite altimeter products. National Remote Sensing Bulletin, 26(12):2473-2485
卫星高度计融合产品广泛应用于海洋环境监测、海洋中尺度系统研究和海洋数值预报等业务领域,具有极高的科学和社会价值。当前同时在轨运行并发布沿轨数据的高度计卫星维持在5—6颗,为了立足现有数量的观测卫星,最大程度地提取有效观测信息,本文以改进融合产品的有效分辨率并提升高度计产品质量为主线,详细介绍了现有卫星高度计融合产品的研发现状。前人的研究结果表明:卫星高度计融合产品的质量主要3个方面的影响:(1)制作产品所选择的卫星种类:因不同种类卫星的轨道高度、周期差异,导致获取的海表高度时空精度也存在不同;(2)高度计标准的选择:资料处理中的仪器参数、地球物理参数、环境校正、平均海面的构造等;(3)融合处理资料的方法:不同融合方法在背景场的选择、背景误差相关系数尺度的差异以及观测误差的处理等。针对众多学者关注的热点和亟需解决的难点问题,本文系统地介绍了当前卫星高度计融合产品的种类,对比分析产品质量。同时针对卫星高度计的融合方法,着重介绍了卫星高度计融合产品质量的提升途径。文中进一步强调了融合方法与有效分辨率的关系,为提升卫星高度计融合产品质量,提高融合产品的有效分辨率,扩大卫星高度计融合产品的应用范围提供参考。
Merged satellite altimeter products have high scientific and social values and are widely used in many ocean related fields
such as marine environmental monitoring
ocean meso-scale structure research
and ocean numerical forecast. At present
5—6 altimeter satellites are in orbit and simultaneously publishing along-track data. We focused on the main question of extracting effective information as much as possible from the existing satellite altimeters of constant number and improving the effective resolution and product quality. The development status of the existing merged satellite altimeter products were introduced in detail.
We introduced DT series merged products made by DUACS in detail based on the widely used AVISO products. Moreover
we analyzed the influence of different merged methods on the product quality starting from the merged method and expounded the decisive role of the selection of background field in the merged method on the effective resolution of the merged product. When combined with sentinel-3a (S3a) and J3 satellites that have recently released data and CryoSat
Saral/Altika
and HY-2a satellites
the observation density of satellite altimeters along the orbit is significantly improved. Meanwhile
the effective resolution of DT2018 produced by DUACS is not significantly improved compared with DT2014 and DT2010. The main reason is that the 7
20
and 25 year average MSS statistical fields were selected for the background field
which includes more large-scale signals in the background error
resulting in the background error. The scale of error covariance correlation coefficient is longer. The filtering effect of the observation data is more significant
and the effective resolution cannot be effectively improved. HY-2B and HY-2C satellites were successfully launched in October 2018 and September 2020
respectively
with sentinel-3b (S3b) already in operation. The accuracy and density of satellite altimeter observation data will reach a new stage together with the SWOT altimeter satellite
which will be launched in 2021. How to consider the correlation of the same orbit observation error
accurately estimate the background error
establish a more reasonable expression function of the correlation coefficient of the background error
and provide an effective method for further improving the merged product quality and effective resolution are the directions that scientists continue to explore.
Previous studies showed that the quality of merged satellite altimeter products is mainly affected by three aspects(1) Type of satellite selected for the production of products: the space-time accuracy of sea surface height also varies due to the difference of orbit height and period of different types of satellites; (2) Selection of altimeter standards: instrument parameters
geophysical parameters
environmental correction
construction of mean sea level
etc.; (3) Data merged methods: selection of different merged methods in the background field
difference of background error correlation coefficient scale
and processing of observation error.
卫星高度计融合产品有效分辨率变分方法最优估计
satellite altimetermerged data producteffective resolutionvariational methodoptimal estimation
Ablain M, Cazenave A, Larnicol G, Balmaseda M, Cipollini P, Faugère Y, Fernandes M J, Henry O, Johannessen J A, Knudsen P, Andersen O, Legeais J, Meyssignac B, Picot N, Roca M, Rudenko S, Scharffenberg M G, Stammer D, Timms G and Benveniste J. 2015. Improved sea level record over the satellite altimetry era (1993—2010) from the climate change initiative project. Ocean Science, 11(1): 67-82 [DOI: 10.5194/os-11-67-2015http://dx.doi.org/10.5194/os-11-67-2015]
Ablain M, Legeais J F, Prandi P, Marcos M, Fenoglio-Marc L, Dieng H B, Benveniste J and Cazenave A. 2017. Satellite altimetry-based sea level at global and regional scales. Surveys in Geophysics, 38(1): 7-31 [DOI: 10.1007/s10712-016-9389-8http://dx.doi.org/10.1007/s10712-016-9389-8]
Ablain M, Philipps S, Picot N and Bronner E. 2010. Jason-2 global statistical assessment and cross-calibration with Jason-1. Marine Geodesy, 33(S1): 162-185 [DOI: 10.1080/01490419.2010.487805http://dx.doi.org/10.1080/01490419.2010.487805]
Abraham J, Cheng L, Mann M, Trenberth K, Schuckmann K. 2022. The ocean response to climate change guides both adaptation and mitigation efforts. Atmospheric and Oceanic Science Letters. 15: 100221 [DOI: 10.1016/j.aosl.2022.100221http://dx.doi.org/10.1016/j.aosl.2022.100221]
Arhan M and de Verdiere A C. 1985. Dynamics of eddy motions in the eastern North Atlantic. Journal of Physical Oceanography, 15(2): 153-170 [DOI: 10.1175/1520-0485(1985)015<0153:DOEMIT>2.0.CO;2http://dx.doi.org/10.1175/1520-0485(1985)015<0153:DOEMIT>2.0.CO;2]
Ballarotta M, Ubelmann C, Pujol M I, Taburet G, Fournier F, Legeais J F, Faugère Y, Delepoulle A, Chelton D, Dibarboure G and Picot N. 2019. On the resolutions of ocean altimetry maps. Ocean Science, 15(4): 1091-1109 [DOI: 10.5194/os-15-1091-2019http://dx.doi.org/10.5194/os-15-1091-2019]
Barron C N and Kara A B. 2006. Satellite-based daily SSTs over the global ocean. Geophysical Research Letters, 33(15): L15603 [DOI: 10.1029/2006GL026356http://dx.doi.org/10.1029/2006GL026356]
Bretherton F P, Davis R E and Fandry C B. 1976. A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep Sea Research and Oceanographic Abstracts, 23(7): 559-582 [DOI: 10.1016/0011-7471(76)90001-2http://dx.doi.org/10.1016/0011-7471(76)90001-2]
Chelton D B, Dibarboure G, Pujol I, Taburet G and Schlax M G. 2014. The spatial resolution of AVISO gridded sea surface height fields. OSTST Lake Constance, Germany, 28—31 October 2014, available at: http://meetings.aviso.altimetry.fr/fileadmin/user_upload/tx_ausyclsseminar/files/29Red0900-1_OSTST_Chelton.pdfhttp://meetings.aviso.altimetry.fr/fileadmin/user_upload/tx_ausyclsseminar/files/29Red0900-1_OSTST_Chelton.pdf
Chelton D B and Schlax M G. 2003. The accuracies of smoothed sea surface height fields constructed from tandem satellite altimeter datasets. Journal of Atmospheric and Oceanic Technology, 20(9): 1276-1302 [DOI: 10.1175/1520-0426(2003)020<1276:TAOSSS>2.0.CO;2http://dx.doi.org/10.1175/1520-0426(2003)020<1276:TAOSSS>2.0.CO;2]
Chelton D B, Schlax M G and Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167-216 [DOI: 10.1016/j.pocean.2011.01.002http://dx.doi.org/10.1016/j.pocean.2011.01.002]
Chelton D B, Schlax M G, Samelson R M and de Szoeke R A. 2007. Global observations of large oceanic eddies. Geophysical Research Letters, 34(15): L15606 [DOI: 10.1029/2007GL030812http://dx.doi.org/10.1029/2007GL030812]
Church J A, White N J, Konikow L F, Domingues C M, Cogley J G, Rignot E, Gregory J M, Van Den broeke M R, Monaghan A J and Velicogna I. 2011. Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophysical Research Letters, 38(18): L18601 [DOI: 10.1029/2011gl048794http://dx.doi.org/10.1029/2011gl048794]
Cui W. 2016. The Study of Merging Sea Level Anomalies Data Derived from Multi-satellite Altimeter (Doctoral dissertation). Qingdao: First Institute of Oceanography,State Oceanic Administration,People’s Republic of China (崔伟. 2016. 多源卫星高度计海面高度异常数据融合研究(博士论文). 青岛: 国家海洋局第一海洋研究所)
Daley R. 1991. Atmospheric Data Analysis. Cambridge, UK and New York, NY, USA: Cambridge University Press:471
Dibarboure G, Pujol M I, Briol F, Le Traon P Y, Larnicol G, Picot N, Mertz F and Ablain M. 2011. Jason-2 in DUACS: updated system description, first tandem results and impact on processing and products. Marine Geodesy, 34(3/4): 214-241 [DOI: 10.1080/01490419.2011.584826http://dx.doi.org/10.1080/01490419.2011.584826]
Ducet N, Le Traon P Y and Reverdin G. 2000. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. Journal of Geophysical Research: Oceans, 105(C8): 19477-19498 [DOI: 10.1029/2000JC900063http://dx.doi.org/10.1029/2000JC900063]
Dufau C, Orsztynowicz M, Dibarboure G, Morrow R and Le Traon P Y. 2016. Mesoscale resolution capability of altimetry: present and future. Journal of Geophysical Research: Oceans, 121(7): 4910-4927 [DOI: 10.1002/2015JC010904http://dx.doi.org/10.1002/2015JC010904]
Dussurget R, Birol F, Morrow R and Mey P D. 2011. Fine resolution altimetry data for a regional application in the Bay of Biscay. Marine Geodesy, 34(3/4): 447-476 [DOI: 10.1080/01490419.2011.584835http://dx.doi.org/10.1080/01490419.2011.584835]
Escudier R, Bouffard J, Pascual A, Poulain P M and Pujol M I. 2013. Improvement of coastal and mesoscale observation from space: application to the northwestern Mediterranean Sea. Geophysical Research Letters, 40(10): 2148-2153 [DOI: 10.1002/grl.50324http://dx.doi.org/10.1002/grl.50324]
Feng W, Lemoine J M, Zhong M and Hsu T T. 2012. Terrestrial water storage changes in the Amazon basin measured by GRACE during 2002—2010. Chinese Journal of Geophysics, 55(3): 814-821
冯伟, Lemoine J M, 钟敏, 许厚泽. 2012. 利用重力卫星GRACE监测亚马逊流域2002—2010年的陆地水变化. 地球物理学报, 55(3): 814-821 [DOI: 10.6038/j.issn.0001-5733.2012.03.011http://dx.doi.org/10.6038/j.issn.0001-5733.2012.03.011]
Fu L L, Stammer D, Leben R R and Chelton D B. 2003. Improved spatial resolution of ocean surface topography from the T/P-Jason-1 altimeter mission. EOS, 84(26): 241-248 [DOI: 10.1029/2003EO260002http://dx.doi.org/10.1029/2003EO260002]
Fu L L and Haines B J. 2013. The challenges in long-term altimetry calibration for addressing the problem of global sea level change. Advances in Space Research, 51:1284-1300[DOI: 10.1016/j.asr.2012.06.005http://dx.doi.org/10.1016/j.asr.2012.06.005]
Greenslade D J M, Chelton D B and Schlax M G. 1997. The midlatitude resolution capability of sea level fields constructed from single and multiple satellite altimeter datasets. Journal of Atmospheric and Oceanic Technology, 14(4): 849-870[DOI: 10.1175/1520-0426(1997)014<0849:TMRCOS>2.0.CO;2http://dx.doi.org/10.1175/1520-0426(1997)014<0849:TMRCOS>2.0.CO;2]
Griffin D and Cahill M. 2012. Assessment of Cryosat sea level anomaly using HF radar and SST imagery. Oral presentation, OSTST Venise, Italy 2012, available at: http://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2012/oral/01_thursday_27/06_NRT_applications/07_NRT_Griffin.pdfhttp://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2012/oral/01_thursday_27/06_NRT_applications/07_NRT_Griffin.pdf
Guan L and Kawamura H. 2004. Merging satellite infrared and microwave SSTs: methodology and evaluation of the new SST. Journal of Oceanography, 60(5): 905-912[DOI: 10.1007/s10872-005-5782-5http://dx.doi.org/10.1007/s10872-005-5782-5]
Guo J, Zhao Q L, Li M and Hu Z G. 2013. Centimeter level orbit determination for HY2A using GPS data. Geomatics and Information Science of Wuhan University, 38(1): 52-55
郭靖, 赵齐乐, 李敏, 胡志刚. 2013. 利用星载GPS观测数据确定海洋2A卫星cm级精密轨道. 武汉大学学报(信息科学版), 38(1): 52-55 [DOI: 10.13203/j.whugis2013.01.021http://dx.doi.org/10.13203/j.whugis2013.01.021]
Guo Q. 2018. China launches HY-2B satellite atop a LM-4B. Aerospace China, (3): 57
He R Y, Weisberg R H, Zhang H Y, Muller-Karger F E and Helber R W. 2003. A cloud-free, satellite-derived, sea surface temperature analysis for the West Florida Shelf. Geophysical Research Letters, 30(15): 1811 [DOI: 10.1029/2003GL017673http://dx.doi.org/10.1029/2003GL017673]
Jevrejeva S, Moore J C, Grinsted A and Woodworth P L. 2008. Recent global sea level acceleration started over 200 years ago?. Geophysical Research Letters, 35(8): L08715 [DOI: 10.1029/2008GL033611http://dx.doi.org/10.1029/2008GL033611]
Kawai Y, Kawamura H, Takahashi S, Hosoda K, Murakami H, Kachi M and Guan L. 2006. Satellite-based high-resolution global optimum interpolation sea surface temperature data. Journal of Geophysical Research, 111(C6): C06016 [DOI: 10.1029/2005JC003313http://dx.doi.org/10.1029/2005JC003313]
Kelly K A and Gille S T. 1990, Gulf Stream surface transport and statistics at 69°W from the Geosat altimeter. Journal of Geophysical Research, 95(C3): 3149-3161 [DOI: 10.1029/JC095iC03p03149http://dx.doi.org/10.1029/JC095iC03p03149]
Koblinsky C J, Gaspar P and Lagerloef G. 1992. The future of spaceborne altimetry//Oceans and Climate Change: A Long-Term Strategy(Technical Report). National Aeronautics and Space Administration (NASA), USA. N-92-26121
Lellouche J M, Le Galloudec O, Drévillon M, Régnier C, Greiner E, Garric G, Ferry N, Desportes C, Testut C E, Bricaud C, Bourdallé-Badie R, Tranchant B, Benkiran M, Drillet Y, Daudin A and De Nicola C. 2013. Evaluation of global monitoring and forecasting systems at Mercator Océan. Ocean Science, 9(1): 57-81 [DOI: 10.5194/os-9-57-2013http://dx.doi.org/10.5194/os-9-57-2013]
Le Traon P Y and Dibarboure G. 2004. An illustration of the contribution of the TOPEX/Poseidon-Jason-1 tandem mission to mesoscale variability studies. Marine Geodesy, 27(1/2): 3-13 [DOI: 10.1080/01490410490489313http://dx.doi.org/10.1080/01490410490489313]
Le Traon P Y and Dibarboure G. 1999. Mesoscale mapping capabilities of multiple-satellite altimeter missions. Journal of Atmospheric and Oceanic Technology, 16(9): 1208-1223 [DOI: 10.1175/1520-0426(1999)016<1208:MMCOMS>2.0.CO;2http://dx.doi.org/10.1175/1520-0426(1999)016<1208:MMCOMS>2.0.CO;2]
Le Traon P Y, Faugère Y, Hernandez F, Dorandeu J, Mertz F and Ablain M. 2003. Can we merge GEOSAT Follow-On with TOPEX/Poseidon and ERS-2 for an improved description of the ocean circulation?. Journal of Atmospheric and Oceanic Technology, 20(6): 889-895 [DOI: 10.1175/1520-0426(2003)020<0889:CWMGFW>2.0.CO;2http://dx.doi.org/10.1175/1520-0426(2003)020<0889:CWMGFW>2.0.CO;2]
Le Traon P Y and Ogor F. 1998. ERS-1/2 orbit improvement using TOPEX/POSEIDON: the 2 cm challenge. Journal of Geophysical Research: Oceans, 103(C4): 8045-8057 [DOI: 10.1029/97JC01917http://dx.doi.org/10.1029/97JC01917]
Li Z J, Cheng X P, Gustafson W I Jr and Vogelmann A M. 2016. Spectral characteristics of background error covariance and multiscale data assimilation. International Journal for Numerical Methods in Fluids, 82(12): 1035-1048 [DOI: 10.1002/fld.4253http://dx.doi.org/10.1002/fld.4253]
Li Z J, McWilliams J C, Ide K and Farrara J D. 2015. A multi-scale data assimilation scheme: formulation and illustration. Monthly Weather Review, 143(9): 3804-3822 [DOI: 10.1175/MWR-D-14-00384.1http://dx.doi.org/10.1175/MWR-D-14-00384.1]
Lin M S, He X Q, Jia Y J, Bai Y, Ye X M and Gong F. 2019. Advances in marine satellite remote sensing technology in China. Acta Oceanologica Sinica, 41(10): 99-112
林明森, 何贤强, 贾永君, 白雁, 叶小敏, 龚芳. 2019. 中国海洋卫星遥感技术进展. 海洋学报, 41(10): 99-112 [DOI: 10.3969/j.issn.0253-4193.2019.10.007http://dx.doi.org/10.3969/j.issn.0253-4193.2019.10.007]
Liu L, Jiang X L, Fei J F and Li Z J. 2020. Development and evaluation of a new merged sea surface height product from multi-satellite altimeters. Chinese Science Bulletin, 65(18): 1888-1897
刘磊, 蒋星亮, 费建芳, Li Zhijin. 2020. 多源卫星高度计新融合产品的研发与评估. 科学通报, 65(18): 1888-1897 [DOI: 10.1360/TB-2020-0097http://dx.doi.org/10.1360/TB-2020-0097]
Nerem R S, Schrama E J O, Koblinsky C J, and Beckley B D. 1994. A preliminary evaluation of ocean topography from the TOPEX/Poseidon mission. Journal of Geophysical Research, 99(C12): 24565- 24583 [DOI: 10.1029/94JC01431http://dx.doi.org/10.1029/94JC01431]
Oke P R, Larnicol G, Fujii Y, Smith G C, Lea D J, Guinehut S, Remy E, Balmaseda M A, Rykova T, Surcel-Colan D, Martin M J, Sellar A A, Mulet S and Turpin V. 2015. Assessing the impact of observations on ocean forecasts and reanalyses: Part 1, Global studies. Journal of Operational Oceanography, 8(S1): s49-s62 [DOI: 10.1080/1755876X.2015.1022067http://dx.doi.org/10.1080/1755876X.2015.1022067]
Ophaug V, Breili K, Andersen O B. 2021. A coastal mean sea surface with associated errors in Norway based on new-generation altimetry. Advances in Space Research, 68:1103-1115[DOI: 10.1016/j.asr.2019.08.010http://dx.doi.org/10.1016/j.asr.2019.08.010]
Pascual A, Faugère Y, Larnicol G and Le Traon P Y. 2006. Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophysical Research Letters, 33(2): L02611 [DOI: 10.1029/2005GL024633http://dx.doi.org/10.1029/2005GL024633]
Pujol M I, Faugère Y, Taburet G, Dupuy S, Pelloquin C, Ablain M and Picot N. 2016. DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years. Ocean Science, 12(5): 1067-1090 [DOI: 10.5194/os-12-1067-2016http://dx.doi.org/10.5194/os-12-1067-2016]
Qiu B. 1994. Determining the mean Gulf Stream and its recirculations through combining hydrographic and altimetric data. Journal of Geophysical Research, 99(C1): 951-962. [DOI: 10.1029/93JC03033http://dx.doi.org/10.1029/93JC03033]
Rapp R H, Zhang C, and Yi Y. 1996. Analysis of dynamic ocean topography using T/P and orthonormal functions. Journal of Geophysical Research, 101(C10): 22583-22598. [DOI: 10.1029/96JC01987http://dx.doi.org/10.1029/96JC01987]
Stocker, T F, Qin D, Plattner G K, and Midgley P M. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press
Taburet G, Sanchez-Roman A, Ballarotta M, Pujol M I, Legeais J F, Fournier F, Faugere Y and Dibarboure G. 2019. DUACS DT2018: 25 years of reprocessed sea level altimetry products. Ocean Science, 15(5): 1207-1224 [DOI: 10.5194/os-15-1207-2019http://dx.doi.org/10.5194/os-15-1207-2019]
Ubelmann C, Cornuelle B and Fu L L. 2016. Dynamic mapping of along-track ocean altimetry: method and performance from observing system simulation experiments. Journal of Atmospheric and Oceanic Technology, 33(8): 1691-1699 [DOI: 10.1175/JTECHD-15-0163.1http://dx.doi.org/10.1175/JTECHD-15-0163.1]
Ubelmann C, Klein P and Fu L L. 2015. Dynamic interpolation of sea surface height and potential applications for future high-resolution altimetry mapping. Journal of Atmospheric and Oceanic Technology, 32(1): 177-184 [DOI: 10.1175/JTECH-D-14-00152.1http://dx.doi.org/10.1175/JTECH-D-14-00152.1]
Woppelmann G, Letetrel C, Santamaria A, Bouin M N, Collilieux X, Altamimi Z, Williams S D P and Miguez B M. 2009. Rates of sea-level change over the past century in a geocentric reference frame. Geophysical Research Letters, 36(12): L12607 [DOI: 10.1029/2009gl038720http://dx.doi.org/10.1029/2009gl038720]
Xu G J, Yang J S, Xu Y, Pan Y F and Chen X Y. 2013. The data fusion of the significant wave height measured with “HY-2” satellite altimeter. Acta Oceanologica Sinica, 35(4): 208-213
徐广珺, 杨劲松, 徐圆, 潘玉方, 陈小燕. 2013. “海洋二号”有效波高数据在多源卫星高度计数据融合中的应用. 海洋学报, 35(4): 208-213 [DOI: 10.3969/j.issn.0253-4193.2013.04.024http://dx.doi.org/10.3969/j.issn.0253-4193.2013.04.024]
Xu Y S, Gao L and Zhang Y H. 2017. New generation altimetry satellite SWOT and its reference to China’s swath altimetry satellite. Remote Sensing Technology and Application, 32(1): 84-94
徐永生, 高乐, 张云华. 2017. 美国新一代测高卫星SWOT——评述我国宽刈幅干涉卫星的发展借鉴. 遥感技术与应用, 32(1): 84-94 [DOI: 10.11873/j.issn.1004-0323.2017.1.0084http://dx.doi.org/10.11873/j.issn.1004-0323.2017.1.0084]
Zheng W, Xu H Z, Zhong M and Yun M J. 2010. Research progress in international gravity satellites and future satellite gravity measurement program in China. Science of Surveying and Mapping, 35(1): 5-9
郑伟, 许厚泽, 钟敏, 员美娟. 2010. 国际重力卫星研究进展和我国将来卫星重力测量计划. 测绘科学, 35(1): 5-9 [DOI: 10.16251/j.cnki.1009-2307.2010.01.001http://dx.doi.org/10.16251/j.cnki.1009-2307.2010.01.001]
相关作者
相关机构