无人机激光雷达人工林林分高估测模型分析
Analysis of estimation models of plantation stand heights using UAV LiDAR
- 2022年26卷第12期 页码:2665-2678
纸质出版日期: 2022-12-07
DOI: 10.11834/jrs.20210246
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-12-07 ,
扫 描 看 全 文
李梅,刘清旺,冯益明,李增元.2022.无人机激光雷达人工林林分高估测模型分析.遥感学报,26(12):2665-2678
Li M,Liu Q W,Feng Y M, and Li Z Y. 2022. Analysis of estimation models of plantation stand heights using UAV LiDAR. National Remote Sensing Bulletin, 26(12):2665-2678
中国人工林面积居世界第一,精确地对人工林结构进行监测具有重要意义。本研究以内蒙古自治区赤峰市旺业甸林场内的落叶松和油松人工林为研究对象,利用无人机激光雷达LiDAR (Light Detection And Ranging)离散点云数据和地面样地调查数据对人工林林分高进行建模,通过点云特征变量与地面测量的6种林分高(包括:Lorey’s高、算术平均高、最大高、优势树高、中位数高和树冠面积加权高)间的Pearson’s相关性筛选自变量,然后利用全子集回归构建不同林分高估测模型,并采用交叉检验法进行精度评价。结果表明:激光雷达点云高度百分位数与不同林分高相关性均较高,通过一元线性回归构建的不同林分高结果最优,且估测模型的自变量均为高度特征变量。Lorey’s高(
R
2
=0.91—0.97,rRMSE=2.75%—3.96%)、优势树高(
R
2
=0.86—0.97,rRMSE=3.72%—3.83%)和树冠面积加权高(
R
2
=0.86—0.96,rRMSE=3.81%—4.73%)估测精度最高,算术平均高(
R
2
=0.85—0.94,rRMSE=4.52%—6.07%)和中位数高(
R
2
=0.80—0.95,rRMSE=5.37%—7.34%)次之,最大高(
R
2
=0.69—0.87,rRMSE=6.19%—8.09%)最低。针对不同森林类型,落叶松人工林林分高估测精度最优,优于不区分森林类型模型的估测精度(
ΔR
2
=0—0.05,
Δ
rRMSE=-0.69%—1.97%),优于油松林林分高模型的估测精度(
ΔR
2
=0.06—0.18,
Δ
rRMSE=‒1.90%—1.13%)。无人机激光雷达可以用于估测北方温带针叶林的林分高,能够满足人工林资源调查快速、精确的要求。
The plantation area of China is the largest in the world. It is very important to precisely monitor plantation structure. The study area is located at Wangyedian forest farm
Chifeng
Inner Mongolia. The dominated tree species include Larix principis-rupprechtii and Pinus tabuliformis. The stand height models of plantation were established using the UAV (Unmanned Aerial Vehicle) LiDAR (Light Detection and Ranging) data and in situ sample plots measurements. The significant independent variables were selected based on the Pearson’s correlations between the six stand heights (Arithmetic mean height
Lorey’s height
Dominated height
Maximum height
Median height and Crown area weighted height) and the statistical metrics of discrete point cloud. The branch-and-bound search of best subset was conducted to fit the estimation models of stand height. The model accuracy was assessed by the cross validation. The results showed that the correlations between the height metrics of LiDAR point cloud and the different stand heights were high. The linear regression obtained the best result for different stand heights. The independent variables of the estimation model were all height metrics. For the six stand heights
the Lorey’s height (
R
2
= 0.91—0.97
rRMSE = 2.75%—3.96%)
dominated height (
R
2
= 0.86—0.97
rRMSE = 3.72%—3.83%) and Crown area weighted height (
R
2
=0.86—0.96
rRMSE = 3.81%—4.73%) had the highest accuracy
while arithmetic mean height (
R
2
=0.85—0.94
rRMSE = 4.52%—6.07%) and median height (
R
2
=0.80—0.95
rRMSE =5.37%—7.34%) had a lower accuracy
maximum height (
R
2
= 0.69—0.87
RMSE = 1.30—1.40 m) was the lowest. Considering the forest types
the estimation accuracies of larch plantation stands were better the estimation accuracies of all forest types (Δ
R
2
= 0—0.05
ΔrRMSE = ‒0.69%—1.97%)
which were better than the estimation accuracy of the stand height models of pine stands (Δ
R
2
= 0.06—0.18
ΔrRMSE = ‒1.90%—1.13%). The UAV LIDAR can be used to estimate the stand height of the northern temperate coniferous forest
and applied for the rapid and accurate investigation of plantation resources.
遥感无人机激光雷达点云人工林林分高
remote sensingUAVLiDARpoint cloudsplantationstand height
Apostol B, Lorenţ A, Petrila M, Gancz V and Badea O. 2016. Height extraction and stand volume estimation based on fusion airborne LiDAR data and terrestrial measurements for a norway spruce [Picea abies (L.) Karst.] test site in Romania. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(1): 313-323 [DOI: 10.15835/nbha.44.1.10155http://dx.doi.org/10.15835/nbha.44.1.10155]
Bonan G B. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320(5882): 1444-1449 [DOI: 10.1126/science.1155121http://dx.doi.org/10.1126/science.1155121]
Bottalico F, Chirici G, Giannini R, Mele S, Mura M, Puxeddu M, Mcroberts R E, Valbuena R and Travaglini D. 2017. Modeling Mediterranean forest structure using airborne laser scanning data. International Journal of Applied Earth Observation and Geoinformation, 57: 145-153 [DOI: 10.1016/j.jag.2016.12.013http://dx.doi.org/10.1016/j.jag.2016.12.013]
Cao L, Dai J S, Xu J X, Xu Z Q and She G H. 2014. Optimized extraction of forest parameters in subtropical forests based on airborne small footprint LiDAR technology. Journal of Beijing Forestry University, 36(5): 13-21
曹林, 代劲松, 徐建新, 许子乾, 佘光辉. 2014. 基于机载小光斑LiDAR技术的亚热带森林参数信息优化提取. 北京林业大学学报, 36(5): 13-21 [DOI: 10.13332/j.cnki.jbfu.2014.05.009http://dx.doi.org/10.13332/j.cnki.jbfu.2014.05.009]
Cao L, Xu T, Shen X and She G H. 2016. Mapping biomass by integrating Landsat OLI and airborne LiDAR transect data in subtropical forests. Journal of Remote Sensing, 20(4): 665-678
曹林, 徐婷, 申鑫, 佘光辉. 2016. 集成Landsat OLI和机载LiDAR条带数据的亚热带森林生物量制图. 遥感学报, 20(4): 665-678 [DOI:10.11834/jrs.20165210http://dx.doi.org/10.11834/jrs.20165210]
Cord A F, Meentemeyer R K, Leitão P J and Václavík T. 2013. Modelling species distributions with remote sensing data: bridging disciplinary perspectives. Journal of Biogeography, 40(12): 2226-2227 [DOI: 10.1111/jbi.12199http://dx.doi.org/10.1111/jbi.12199]
Elias A and Daniel H. 2018. The use of three-dimensional convolutional neural networks to interpret LiDAR for forest inventory. Remote Sensing, 10(4): 649 [DOI: 10.3390/rs10040649http://dx.doi.org/10.3390/rs10040649]
Farid A, Goodrich D C and Sorooshian S. 2006. Using airborne LiDAR to discern age classes of cottonwood trees in a riparian area. Western Journal of Applied Forestry, 21(3):149-158 [DOI: 10.1093/wjaf/21.3.149http://dx.doi.org/10.1093/wjaf/21.3.149]
Fu T, Pang Y, Huang Q F, Liu Q W and Xu G C. 2011. Prediction of subtropical forest parameters using airborne laser scanner. Journal of Remote Sensing, 15(5): 1092-1104
付甜, 庞勇, 黄庆丰, 刘清旺, 徐光彩. 2011. 亚热带森林参数的机载激光雷达估测. 遥感学报, 15(5): 1092-1104 [DOI: 10.11834/jrs.20110150http://dx.doi.org/10.11834/jrs.20110150]
Goodbody T R H, Coops N C, Tompalski P, Crawford P and Day K J K. 2017. Updating residual stem volume estimates using ALS-and UAV-acquired stereo-photogrammetric point clouds. International Journal of Remote Sensing, 38: 2938-2953 [DOI: 10.1080/01431161.2016.1219425http://dx.doi.org/10.1080/01431161.2016.1219425]
Guo Q H, Hu T Y, Jiang Y Q, Jin S C, Wang R, Guan H C, Yang Q L, Li Y M, Wu F F, Zhai Q P, Liu J and Su Y J. 2018. Advances in remote sensing application for biodiversity research. Biodiversity Science, 26(8): 789-806
郭庆华, 胡天宇, 姜媛茜, 金时超, 王瑞, 关宏灿, 杨秋丽, 李玉美, 吴芳芳, 翟秋萍, 刘瑾, 苏艳军. 2018. 遥感在生物多样性研究中的应用进展. 生物多样性, 26(8): 789-806 [DOI: 10.17520/biods.2018054http://dx.doi.org/10.17520/biods.2018054]
Holmgren J. 2004. Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning. Scandinavian Journal of Forest Research, 19(6): 543-553 [DOI: 10.1080/02827580410019472http://dx.doi.org/10.1080/02827580410019472]
Hu J B and Zhang J. 2018. Unmanned Aerial Vehicle remote sensing in ecology: advances and prospects. Acta Ecologica Sinica, 38(1): 20-30
胡健波, 张健. 2018. 无人机遥感在生态学中的应用进展. 生态学报, 38(1): 20-30 [DOI: 10.5846/stxb201612092538http://dx.doi.org/10.5846/stxb201612092538]
Hudak A T, Crookston N L, Evans J S, Hall D E and Falkowski M J. 2008. Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sensing of Environment, 112(5): 2232-2245 [DOI: 10.1016/j.rse.2007.10.009http://dx.doi.org/10.1016/j.rse.2007.10.009]
Järnstedt J, Pekkarinen A, Tuominen S, Ginzler C, Holopainen M and Viitala R. 2012. Forest variable estimation using a high-resolution digital surface model. ISPRS Journal of Photogrammetry and Remote Sensing, 74: 78-84 [DOI: 10.1016/j.isprsjprs.2012.08.006http://dx.doi.org/10.1016/j.isprsjprs.2012.08.006].
Jensen J L R and Mathews A J. 2016. Assessment of image-based point cloud products to generate a bare earth surface and estimate canopy heights in a woodland ecosystem. Remote Sensing, 8(1): 50 [DOI: 10.3390/rs8010050http://dx.doi.org/10.3390/rs8010050]
Khosravipour A, Skidmore A K, Wang T J, Isenburg M and Khoshelham K. 2015. Effect of slope on treetop detection using a LiDAR canopy height model. ISPRS Journal of Photogrammetry and Remote Sensing, 104: 44-52 [DOI: 10.1016/j.isprsjprs.2015.02.013http://dx.doi.org/10.1016/j.isprsjprs.2015.02.013]
Lee W J and Lee C W. 2018. Forest canopy height estimation using multiplatform remote sensing dataset. Journal of Sensors, 2018:1-9 [DOI: 10.1155/2018/1593129http://dx.doi.org/10.1155/2018/1593129]
Li Y C, Li C, Li M Y and Liu Z Z. 2019. Influence of variable selection and forest type on forest aboveground biomass estimation using machine learning algorithms. Forests, 10(12): 1073 [DOI: 10.3390/f10121073http://dx.doi.org/10.3390/f10121073]
Li Z Y and Chen E X. 2021. Development course of forestry remote sensing in China. Journal of Remote Sensing,25(1):292-301
李增元, 陈尔学. 2021. 中国林业遥感发展历程. 遥感学报,25(1): 292-301 [DOI:10.11834/jrs.20211016http://dx.doi.org/10.11834/jrs.20211016]
Li Z Y, Liu Q W and Pang Y. 2016. Review on forest parameters inversion using LiDAR. Journal of Remote Sensing, 20(5): 1138-1150
李增元, 刘清旺, 庞勇. 2016. 激光雷达森林参数反演研究进展. 遥感学报, 20(5): 1138-1150 [DOI: 10.11834/jrs.20165130http://dx.doi.org/10.11834/jrs.20165130]
Lim K S and Treitz P M. 2004. Estimation of aboveground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators. Scandinavian Journal of Forest Research, 19(6): 558-570 [DOI: 10.1080/02827580410019490http://dx.doi.org/10.1080/02827580410019490]
Liu H, Zhang Z N and Cao L. 2018. Estimating forest stand characteristics in a coastal plain forest plantation based on vertical structure profile parameters derived from ALS data. Journal of Remote Sensing, 22(5): 872-888
刘浩, 张峥男, 曹林. 2018. 机载激光雷达森林垂直结构剖面参数的沿海平原人工林林分特征反演. 遥感学报, 22(5): 872-888 [DOI: 10.11834/jrs.20187465http://dx.doi.org/10.11834/jrs.20187465]
Liu K, Shen X, Cao L, Wang G B and Cao F L. 2018. Estimating forest structural attributes using UAV-LiDAR data in Ginkgo plantations. ISPRS Journal of Photogrammetry and Remote Sensing, 146: 465-482. [DOI: 10.1016/j.isprsjprs.2018.11.001http://dx.doi.org/10.1016/j.isprsjprs.2018.11.001]
Lu L, Zhou X C, Yu Z Z, Han S and Wang X Q. 2016. Plot-level forest height inversion using airborne LiDAR data based on the random forest. Journal of Geo-Information Science, 18(8): 1133-1140
鲁林, 周小成, 余治忠, 韩尚, 汪小钦. 2016. 随机森林算法在机载LiDAR数据林分平均树高估算中的应用研究. 地球信息科学学报, 18(8): 1133-1140 [DOI: 10.3724 /SP.J.1047.2016.01133http://dx.doi.org/10.3724/SP.J.1047.2016.01133]
Means J E, Acker S A, Fitt B J, Renslow M, Emerson L and Hendrix C J. 2000. Predicting forest stand characteristics with airborne scanning LiDAR. Photogrammetric Engineering and Remote Sensing, 66(11): 1367-1371
Mu X Y, Zhang Q L, Liu Q W, Pang Y and Hu K L. 2015. Typical forest height mapping in cold temperate zone using airborne LiDAR data. Journal of Beijing Forestry University, 37(7): 58-67
穆喜云, 张秋良, 刘清旺, 庞勇, 胡凯龙. 2015. 基于机载激光雷达的寒温带典型森林高度制图研究. 北京林业大学学报, 37(7): 58-67 [DOI: 10.13332/j.1000-1522.20150016http://dx.doi.org/10.13332/j.1000-1522.20150016]
Mutwiri F K, Odera P A and Kinyanjui M J. 2017. Estimation of tree height and forest biomass using airborne LiDAR data: a case study of londiani forest block in the Mau Complex, Kenya. Open Journal of Forestry, 7(2): 255-269 [DOI: 10.4236/ojf.2017.72016http://dx.doi.org/10.4236/ojf.2017.72016]
Næsset E and Bjerknes K O. 2001. Estimating tree heights and number of stems in young forest stands using airborne laser scanner data. Remote Sensing of Environment, 78(3): 328-340 [DOI: 10.1016/S0034-4257(01)00228-0http://dx.doi.org/10.1016/S0034-4257(01)00228-0]
Næsset E and Gobakken T. 2005. Estimating forest growth using canopy metrics derived from airborne laser scanner data. Remote Sensing of Environment, 96: 453-465 [DOI: 10.1016/j.rse.2005.04.001http://dx.doi.org/10.1016/j.rse.2005.04.001]
Næsset E. 2005. Assessing sensor effects and effects of leaf-off and leaf-on canopy conditions on biophysical stand properties derived from small-footprint airborne laser data. Remote Sensing of Environment, 98: 356-370 [DOI: 10.1016/j.rse.2005.07.012http://dx.doi.org/10.1016/j.rse.2005.07.012]
Nelson R, Margolis H, Montesano P, Sun G Q, Cook B, Corp L, Andersen H E, DeJong B, Pellat F P, Fickel T, Kauffman J and Prisley S. 2017. Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations. Remote Sensing of Environment, 188: 127-140 [DOI: 10.1016/j.rse.2016.10.038http://dx.doi.org/10.1016/j.rse.2016.10.038]
Nijland W, Coops N C, Macdonald S E, Nielsen S E, Bater C W and Stadt J J. 2015. Comparing patterns in forest stand structure following variable harvests using airborne laser scanning data. Forest Ecology and Management, 354: 272-280 [DOI: 10.1016/j.foreco.2015.06.005http://dx.doi.org/10.1016/j.foreco.2015.06.005]
Nilsson M. 1996. Estimation of tree heights and stand volume using an airborne lidar system. Remote Sensing of Environment, 56(1): 1-7[DOI: 10.1016/0034-4257(95)00224-3http://dx.doi.org/10.1016/0034-4257(95)00224-3]
Nilsson M, Nordkvist K, Jonzén J, Lindgren N, Axensten P, Wallerman J, Egberth M, Larsson S, Nilsson L, Eriksson J and Olsson H. 2017. A nationwide forest attribute map of Sweden predicted using airborne laser scanning data and field data from the National Forest Inventory. Remote Sensing of Environment, 194: 447-454 [DOI: 10.1016/j.rse.2016.10.022http://dx.doi.org/10.1016/j.rse.2016.10.022]
Noordermeer L, Bollandsås O M, Gobakken T and Næsset E. 2018. Direct and indirect site index determination for Norway spruce and Scots pine using bitemporal airborne laser scanner data. Forest Ecology and Management, 428: 104-114 [DOI: 10.1016/j.foreco.2018.06.041http://dx.doi.org/10.1016/j.foreco.2018.06.041]
Noordermeer L, Bollandsås O M., Ørka H O, Næsset E and Gobakken T. 2019. Comparing the accuracies of forest attributes predicted from airborne laser scanning and digital aerial photogrammetry in operational forest inventories. Remote Sensing of Environment, 226: 26-37 [DOI: 10.1016/j.rse.2019.03.027http://dx.doi.org/10.1016/j.rse.2019.03.027]
Pang Y, Zhao F, Li Z Y, Zhou S F, Deng G, Liu Q W and Chen E X. 2008. Forest height inversion using airborne LiDAR technology. Journal of Remote Sensing, 12(1): 152-158
庞勇, 赵峰, 李增元, 周淑芳, 邓广, 刘清旺, 陈尔学. 2008. 机载激光雷达平均树高提取研究. 遥感学报, 12(1): 152-158 [DOI: 10.11834/jrs.20080120http://dx.doi.org/10.11834/jrs.20080120]
Payn T, Carnus J M, Freer-Smith P, Kimberley M, Kollert W, Liu S R, Orazio C, Rodriguez L, Silva L N and Wingfield M J. 2015. Changes in planted forests and future global implications. Forest Ecology and Management, 352(4): 57-67 [DOI: 10.1016/j.foreco.2015.06.021http://dx.doi.org/10.1016/j.foreco.2015.06.021]
Popescu S C, Wynne R H and Nelson R F. 2002. Estimating plot-level tree heights with lidar: local filtering with a canopy-height based variable window size. Computers and Electronics in Agriculture, 37(1-3): 71-95 [DOI: 10.1016/S0168-1699(02)00121-7http://dx.doi.org/10.1016/S0168-1699(02)00121-7]
Puliti S, Ørka H O, Gobakken T and Næsset E. 2015. Inventory of small forest areas using an unmanned aerial system. Remote Sensing, 7(8): 9632-9654 [DOI: 10.3390/rs70809632http://dx.doi.org/10.3390/rs70809632]
Saatchi S S, Harris N L, Brown S, Lefsky M, Mitchard E T A, Salas W, Zutta B R, Buermann W, Lewis S L, Hagen S, Petrova S, White L, Silman M and Morel A. 2011. Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences of the United States of America, 108(24): 9899-9904 [DOI: 10.1073/pnas.1019576108http://dx.doi.org/10.1073/pnas.1019576108]
Salamí E, Barrado C and Pastor E. 2014. UAV flight experiments applied to the remote sensing of vegetated areas. Remote Sensing, 6(11): 11051-11081 [DOI: 10.3390/rs61111051http://dx.doi.org/10.3390/rs61111051]
Sibona E, Vitali A, Meloni F, Caffo L, Dotta A, Lingua E, Motta R and Garbarino M. 2017. Direct measurement of tree height provides different results on the assessment of LiDAR Accuracy. Forests, 8(1): 7 [DOI: 10.3390/f8010007http://dx.doi.org/10.3390/f8010007]
Szulecka J and Zalazar E M. 2017. Forest plantations in Paraguay: historical developments and a critical diagnosis in a SWOT-AHP framework. Land Use Policy, 60: 384-394 [DOI: 10.1016/j.landusepol.2016.11.001http://dx.doi.org/10.1016/j.landusepol.2016.11.001]
Tesfamichael S G, van Aardt J A N and Ahmed F. 2010. Estimating plot-level tree height and volume of Eucalyptus grandis plantations using small-footprint, discrete return lidar data. Progress in Physical Geography, 34(4): 515-540 [DOI: 10.1177/0309133310365596http://dx.doi.org/10.1177/0309133310365596]
Ullah S, Adler P, Dees M, Datta P, Weinacker H and Koch B. 2017. Comparing image-based point clouds and airborne laser scanning data for estimating forest heights. iForest - Biogeosciences and Forestry, 10: 273-280 [DOI: 10.3832/ifor2077-009http://dx.doi.org/10.3832/ifor2077-009]
Wallace L, Lucieer A, Malenovský Z, Turner D and Vopěnka P. 2016. Assessment of forest structure using two UAV techniques: a comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests, 7(3): 62 [DOI: 10.3390/f7030062http://dx.doi.org/10.3390/f7030062]
Wang Y H, Chen E X, Guo Y, Li Z Y, Jin Y D, Zhao J P and Zhou Y. 2020. Deep U-net optimization method for forest type classification with high resolution multispectral remote sensing images. Forest Research, 33(1): 11-18
王雅慧, 陈尔学, 郭颖, 李增元, 金玉栋, 赵俊鹏, 周瑶. 2020. 高分辨率多光谱遥感影像森林类型分类深度U-net优化方法. 林业科学研究, 33(1): 11-18 [DOI: 10.13275/j.cnki.lykxyj.2020.01.002http://dx.doi.org/10.13275/j.cnki.lykxyj.2020.01.002]
White J C, Stepper C, Tompalski P, Coops N C and Wulder M A. 2015. Comparing ALS and image-based point cloud metrics and modelled forest inventory attributes in a complex coastal forest environment. Forests, 6(10): 3704-3732 [DOI: 10.3390/f6103704http://dx.doi.org/10.3390/f6103704]
Wulder M A, White J C, Nelson R F, Næsset E, Ørka H O, Coops N C, Hilker T, Bater C W and Gobakken T. 2012. LiDAR sampling for large-area forest characterization: a review. Remote Sensing of Environment, 121: 196-209 [DOI: 10.1016/j.rse.2012.02.001http://dx.doi.org/10.1016/j.rse.2012.02.001]
Wulder M A, White J C, Stinson G, Hilker T, Kurz W A, Coops N C, St-Onge B and Trofymow J A T. 2010. Implications of differing input data sources and approaches upon forest carbon stock estimation. Environmental Monitoring and Assessment, 166: 543-561 [DOI: 10.1007/s10661-009-1022-6http://dx.doi.org/10.1007/s10661-009-1022-6]
Xie Y Y, Wang B, Yao Y, Yang L, Gao Y, Zhang Z M and Lin L X. 2020. Quantification of vertical community structure of subtropical evergreen broad-leaved forest community using UAV-Lidar data. Acta Ecologica Sinica, 40(3): 940-951
解宇阳, 王彬, 姚扬, 杨琅, 高媛, 张志明, 林露湘. 2020. 基于无人机激光雷达遥感的亚热带常绿阔叶林群落垂直结构分析. 生态学报, 40(3): 940-951 [DOI: 10.5846/stxb201809282112http://dx.doi.org/10.5846/stxb201809282112]
Xu T, Cao L, Shen X and She G H. 2015. Estimates of subtropical forest biomass based on airborne LiDAR and Landsat 8 OLI data. Chinese Journal of Plant Ecology, 39(4): 309-321
徐婷, 曹林, 申鑫, 佘光辉. 2015. 基于机载激光雷达与Landsat 8 OLI数据的亚热带森林生物量估算. 植物生态学报, 39(4): 309-321 [DOI: 10.17521/cjpe.2015.0030http://dx.doi.org/10.17521/cjpe.2015.0030]
Xu Z Q, Cao L, Ruan H H, Li W Z and Jiang S. 2015. Inversion of subtropical forest stand characteristics by integrating very high resolution imagery acquired from UAV and LiDAR point-cloud. Chinese Journal of Plant Ecology, 39(7): 694-703
许子乾, 曹林, 阮宏华, 李卫正, 蒋圣. 2015. 集成高分辨率UAV影像与激光雷达点云的亚热带森林林分特征反演. 植物生态学报, 39(7): 694-703 [DOI: 10.17521/cjpe.2015.0066http://dx.doi.org/10.17521/cjpe.2015.0066]
Zarco-Tejada P J, Diaz-Varela R, Angileri V and Loudjani P. 2014. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy, 55: 89-99 [DOI: 10.1016/j.eja.2014.01.004http://dx.doi.org/10.1016/j.eja.2014.01.004]
Zhang J, Hu J B, Lian J Y, Fan Z J, Ouyang X J and Ye W H. 2016. Seeing the forest from drones: testing the potential of lightweight drones as a tool for long-term forest monitoring. Biological Conservation, 198: 60-69 [DOI: 10.1016/j.biocon.2016.03.027http://dx.doi.org/10.1016/j.biocon.2016.03.027]
Zhao K G, Suarez J C, Garcia M, Hu T X, Wang C and Londo A. 2018. Utility of multitemporal lidar for forest and carbon monitoring: tree growth, biomass dynamics, and carbon flux. Remote Sensing of Environment, 204: 883-897 [DOI: 10.1016/j.rse.2017.09.007http://dx.doi.org/10.1016/j.rse.2017.09.007]
Zhen Z, Quackenbush L J and Zhang L J. 2016. Trends in automatic individual tree crown detection and delineation—evolution of LiDAR data. Remote Sensing, 8(4): 333 [DOI: 10.3390/rs8040333http://dx.doi.org/10.3390/rs8040333]
相关作者
相关机构