遥感图像倾斜边界框目标检测研究进展与展望
Survey on object detection in tilting box for remote sensing images
- 2022年26卷第9期 页码:1723-1743
纸质出版日期: 2022-09-07
DOI: 10.11834/jrs.20210247
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-09-07 ,
扫 描 看 全 文
张磊,张永生,于英,马永政,姜怀刚.2022.遥感图像倾斜边界框目标检测研究进展与展望.遥感学报,26(9): 1723-1743
Zhang L,Zhang Y S,Yu Y,Ma Y Z and Jiang H G. 2022. Survey on object detection in tilting box for remote sensing images. National Remote Sensing Bulletin, 26(9):1723-1743
遥感图像目标检测是遥感图像处理中的一个基本问题,尤其是伴随着深度学习以及遥感影像获取等技术的发展与突破,基于深度学习的遥感图像目标检测得到了广泛的关注。区别于自然图像,遥感图像中的物体目标具有方向任意的特点,众多国内外学者提出一系列基于倾斜边界框的遥感图像目标检测算法,推动了遥感图像目标检测的提升。为使得相关领域研究者对基于深度学习的遥感图像倾斜框目标检测的理论、流程及其现存问题有一个比较全面的认知,本文将对其进行系统的整理和归纳。
Object detection is a fundamental aspect of remote sensing image processing. With the development of remote sensing image acquisition and the breakthrough in deep learning
object detection in aerial imagery based on deep learning has attracted considerable interest. Although significant progress has been made
there are still numerous obstacles due to the large-scale and highly complex backgrounds of optical remote sensing images. In addition
approaches based on horizontal proposals for common object detection frequently suffer from the mismatch issue when detecting densely arranged and arbitrarily oriented objects in aerial imagery. Therefore
numerous domestic and international researchers have proposed tilting box object detection algorithms based on deep learning that enhances the object detection effect of remote sensing images. This paper systematically organizes and summarizes them for researchers in related fields to comprehensively understand the theory
process
and existing problems of deep learning-based remote sensing image tilting box object detection.
In this paper
we first analyze the limitations of Horizontal Bounding Box (HBB) object detection algorithms applied to remote sensing images
namely
the introduction of background noise
inappropriate post-processing operation
Non-Maximum Suppression (NMS)
and the inability to accurately determine the orientation of objects
which can be remedied by the tilting bounding box object detection method.
Following this
we list the classical HBB object detection algorithms based on deep learning and briefly describe their underlying principles. Then
the development of the tilting bounding box object detection algorithm and the process of improving the two-stage tilting bounding box object detection algorithm is described from three perspectives: the feature extraction network
anchor boxes
and the proposed region design. Finally
the one-stage detection algorithm’s loss function has been studied infrequently
so the two algorithms are merely introduced.
In the fourth section
the detection performance of existing tilt box object detection algorithms is demonstrated on two publicly available and challenging aerial datasets (
i.e.
DOTA and HRSC2016). The comparison results of the three tables indicate that a particular object feature enhancement module must be designed to account for the uniqueness of the objects in remote sensing images and that the RSE problem in the algorithm for detecting tilting bounding boxes requires additional consideration. Although the one-stage detection algorithm is marginally less accurate than the two-stage algorithm
it has clear advantages in terms of efficiency and therefore has some research value.
The paper concludes with a six-point summary of the tilt box target detection algorithm’s existing problems and an outlook on its future development trend.
遥感图像深度学习卷积神经网络倾斜边界框目标检测
remote sensing imagedeep learningconvolutional neural networkobject detection in tilting bounding box
Azimi S M, Vig E, Bahmanyar R, Körner M and Reinartz P. 2018. Towards multi-class object detection in unconstrained remote sensing imagery//14th Asian Conference on Computer Vision. Perth: Springer: 150-165 [DOI: 10.1007/978-3-030-20893-6_10http://dx.doi.org/10.1007/978-3-030-20893-6_10]
Dai J F, Li Y, He K M and Sun J. 2016. R-FCN: object detection via region-based fully convolutional networks//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona: ACM: 379-387 [DOI: 10.5555/3157096.3157139http://dx.doi.org/10.5555/3157096.3157139]
Dalal N and Triggs B. 2005. Histograms of oriented gradients for human detection//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). San Diego: IEEE: 886-893 [DOI: 10.1109/CVPR.2005.177http://dx.doi.org/10.1109/CVPR.2005.177]
Ding J, Xue N, Long Y, Xia G S and Lu Q K. 2019. Learning RoI transformer for oriented object detection in aerial images//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE: 2844-2853 [DOI: 10.1109/CVPR.2019.00296http://dx.doi.org/10.1109/CVPR.2019.00296]
Duan K W, Bai S, Xie L X, Qi H G, Huang Q M and Tian Q. 2019. CenterNet: keypoint triplets for object detection//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE: 6569-6578 [DOI: 10.1109/ICCV.2019.00667http://dx.doi.org/10.1109/ICCV.2019.00667]
Felzenszwalb P F, Girshick R B and McAllester D. 2010. Cascade object detection with deformable part models//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE: 2241-2248 [DOI: 10.1109/CVPR.2010.5539906http://dx.doi.org/10.1109/CVPR.2010.5539906]
Fu K, Chen Z, Zhang Y and Sun X. 2019. Enhanced feature representation in detection for optical remote sensing images. Remote Sensing, 11(18): 2095[DOI: 10.3390/rs11182095http://dx.doi.org/10.3390/rs11182095]
Fu K, Chang Z H, Zhang Y, Xu G L, Zhang K S and Sun X. 2020. Rotation-aware and multi-scale convolutional neural network for object detection in remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 161: 294-308 [DOI: 10.1016/j.isprsjprs.2020.01.025http://dx.doi.org/10.1016/j.isprsjprs.2020.01.025]
Girshick R. 2015. Fast R-CNN//Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE: 1440-1448 [DOI: 10.1109/ICCV.2015.169http://dx.doi.org/10.1109/ICCV.2015.169]
Girshick R, Donahue J, Darrell T and Malik J. 2014. Rich feature hierarchies for accurate object detection and semantic segmentation//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE: 580-587 [DOI: 10.1109/CVPR.2014.81http://dx.doi.org/10.1109/CVPR.2014.81]
He K M, Gkioxari G, Dollár P and Girshick R. 2017. Mask R-CNN//Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE: 2980-2988 [DOI: 10.1109/ICCV.2017.322http://dx.doi.org/10.1109/ICCV.2017.322]
Jiang Y Y, Zhu X Y, Wang X B, Yang S L, Li W, Wang H, Fu P and Luo Z B. 2018. Rotational region cnn for arbitrarily-oriented scene text detection//2018 24th International Conference on Pattern Recognition (ICPR). IEEE: 3610-3615[DOI: 10.1109/icpr.2018.8545598http://dx.doi.org/10.1109/icpr.2018.8545598]
Law H and Deng J. 2018. CornerNet: detecting objects as paired keypoints//Proceedings of the 15th European Conference on Computer Vision. Munich: Springer: 765-781 [DOI: 10.1007/978-3-030-01264-9_45http://dx.doi.org/10.1007/978-3-030-01264-9_45]
LeCun Y, Bengio Y and Hinton G. 2015. Deep learning. Nature, 521(7553): 436-444 [DOI: 10.1038/nature14539http://dx.doi.org/10.1038/nature14539]
Li C Z, Xu C Y, Cui Z, Wang D, Zhang T and Yang J. 2019. Feature—attentioned object detection in remote sensing imagery//2019 IEEE International Conference on Image Processing (ICIP). Taipei, China: IEEE: 3886-3890 [DOI: 10.1109/ICIP.2019.8803521http://dx.doi.org/10.1109/ICIP.2019.8803521]
Li D Z, Fan D Z and Su Y L. 2018. Building Detection in remote sensing image based on faster R-CNN. Journal of Geomatics Science and Technology, 35(4): 389-394
李东子, 范大昭, 苏亚龙. 2018. 结合Faster R-CNN模型的遥感影像建筑物检测. 测绘科学技术学报, 35(4): 389-394 [DOI: 10.3969/j.issn.1673-6338.2018.04.011http://dx.doi.org/10.3969/j.issn.1673-6338.2018.04.011]
Li X Y, Long S P and Zhu J. 2020. Survey of few-shot learning based on deep neural network. Application Research of Computers, 37(8): 2241-2247.
李新叶, 龙慎鹏, 朱婧. 2020. 基于深度神经网络的少样本学习综述. 计算机应用研究, 37(8): 2241-2247 [DOI: 10.19734/j.issn.1001-3695.2019.03.0036http://dx.doi.org/10.19734/j.issn.1001-3695.2019.03.0036]
Li Y Y, Huang Q, Pei X, Jiao L C and Shang R H. 2020. RADet: refine feature pyramid network and multi-layer attention network for arbitrary-oriented object detection of remote sensing images. Remote Sensing, 12(3): 389 [DOI: 10.3390/rs12030389http://dx.doi.org/10.3390/rs12030389]
Li Z M, Peng C, Yu G, Zhang X Y, Deng Y D and Sun J. 2017. Light-head R-CNN: in defense of two-stage object detector. arXiv Preprint arXiv: 1711.07264
Liao M H, Shi B G and Bai X. 2018a. Textboxes++: a single-shot oriented scene text detector. IEEE Transactions on Image Processing, 27(8): 3676-3690 [DOI: 10.1109/TIP.2018.2825107http://dx.doi.org/10.1109/TIP.2018.2825107]
Liao M H, Shi B G, Bai X, Wang X G and Liu W Y. 2017. TextBoxes: a fast text detector with a single deep neural network//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco: ACM: 4161-4167 [DOI: 10.5555/3298023.3298172http://dx.doi.org/10.5555/3298023.3298172]
Liao M H, Zhu Z, Shi B G, Xia G S and Bai X. 2018b. Rotation-sensitive regression for oriented scene text detection//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE: 5909-5918 [DOI: 10.1109/CVPR.2018.00619http://dx.doi.org/10.1109/CVPR.2018.00619]
Lin T Y, Dollár P, Girshick R, He K M, Hariharan B and Belongie S. 2017a. Feature pyramid networks for object detection//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE: 936-944 [DOI: 10.1109/CVPR.2017.106http://dx.doi.org/10.1109/CVPR.2017.106]
Lin T Y, Goyal P, Girshick R, He K M and Dollár P. 2017b. Focal loss for dense object detection//Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE: 2999-3007 [DOI: 10.1109/ICCV.2017.324http://dx.doi.org/10.1109/ICCV.2017.324]
Lin Y T, Feng P M, Guan J, Wang W W and Chambers J. 2019. IENet: interacting embranchment one stage anchor free detector for orientation aerial object detection. arXiv Preprint arXiv: 1912.00969
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C Y and Berg A C. 2016. SSD: single shot MultiBox detector//14th European Conference on Computer Vision. Amsterdam: Springer: 21-37 [DOI: 10.1007/978-3-319-46448-0_2http://dx.doi.org/10.1007/978-3-319-46448-0_2]
Liu Z K, Yuan L, Weng L B and Yang Y P. 2017. A high resolution optical satellite image dataset for ship recognition and some new baselines//Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods. Porto: ICPRAM: 324-331 [DOI: 10.5220/0006120603240331http://dx.doi.org/10.5220/0006120603240331]
Ma J Q, Shao W Y, Ye H, Wang L, Wang H, Zheng Y B and Xue X Y. 2018. Arbitrary-oriented scene text detection via rotation proposals. IEEE Transactions on Multimedia, 20(11): 3111-3122 [DOI: 10.1109/TMM.2018.2818020http://dx.doi.org/10.1109/TMM.2018.2818020]
Qian W, Yang X, Peng S L, Yan J C and Guo Y. 2021. Learning modulated loss for rotated object detection//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI: 2458-2466.
Qiu H Q, Li H L, Wu Q B, Meng F M, Ngan K N and Shi H C. 2019. A2RMNet: adaptively aspect ratio multi-scale network for object detection in remote sensing images. Remote Sensing, 11(13): 1594 [DOI: 10.3390/rs11131594http://dx.doi.org/10.3390/rs11131594]
Redmon J, Divvala S, Girshick R and Farhadi A. 2016. You only look once: unified, real-time object detection//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE: 779-788 [DOI: 10.1109/CVPR.2016.91http://dx.doi.org/10.1109/CVPR.2016.91]
Redmon J and Farhadi A. 2017. YOLO9000: better, faster, stronger//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE: 6517-6525 [DOI: 10.1109/CVPR.2017.690http://dx.doi.org/10.1109/CVPR.2017.690]
Redmon J and Farhadi A. 2018. YOLOv3: an incremental improvement. arXiv Preprint arXiv: 1804.02767
Ren S Q, He K M, Girshick R and Sun J. 2017. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6): 1137-1149 [DOI: 10.1109/TPAMI.2016.2577031http://dx.doi.org/10.1109/TPAMI.2016.2577031]
Shi B, Bai X and Belongie S. 2017. Detecting oriented text in natural images by linking segments//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. IEEE: 2550-2558[DOI: 10.1109/cvpr.2017.371http://dx.doi.org/10.1109/cvpr.2017.371]
Sun P, Chen G, Luke G and Shang Y. 2018. Salience biased loss for object detection in aerial images. arXiv Preprint arXiv: 1810.08103
Van De Sande K E A, Uijlings J R R, Gevers T and Smeulders A W M. 2011. Segmentation as selective search for object recognition//2011 International Conference on Computer Vision. Barcelona: IEEE: 1879-1886 [DOI: 10.1109/ICCV.2011.6126456http://dx.doi.org/10.1109/ICCV.2011.6126456]
Wang C A. 2019. Detection and Fine-Grained Recognition of Inshore Ships on Optical Remote Sensing Images. Wuhan: Huazhong University of Science and Technology: 1-2
王昌安. 2019. 遥感影像中的近岸舰船目标检测和细粒度识别方法研究. 武汉: 华中科技大学: 1-2
Wang J W, Ding J, Guo H W, Cheng W S, Pan T and Yang W. 2019. Mask OBB: a semantic attention-based mask oriented bounding box representation for multi-category object detection in aerial images. Remote Sensing, 11(24): 2930[DOI: 10.3390/rs11242930http://dx.doi.org/10.3390/rs11242930]
Wang P J, Sun X, Diao W H and Fu K. 2020. FMSSD: feature-merged single-shot detection for multiscale objects in large-scale remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 58(5): 3377-3390 [DOI: 10.1109/TGRS.2019.2954328http://dx.doi.org/10.1109/TGRS.2019.2954328]
Wang Y S, Zhang Y, Zhang Y, Zhao L J, Sun X and Guo Z. 2019. SARD: towards scale-aware rotated object detection in aerial imagery. IEEE Access, 7: 173855-173865 [DOI: 10.1109/ACCESS.2019.2956569http://dx.doi.org/10.1109/ACCESS.2019.2956569]
Wei H R, Zhang Y, Chang Z H, Li H, Wang H Q and Sun X. 2020. Oriented objects as pairs of middle lines. ISPRS Journal of Photogrammetry and Remote Sensing, 169: 268-279 [DOI: 10.1016/j.isprsjprs.2020.09.022http://dx.doi.org/10.1016/j.isprsjprs.2020.09.022]
Wen J W. 2018. Research on Object Detection with Deep Learning. Guangzhou: Guangdong University of Technology: 1-2
温捷文. 2018. 基于深度学习的目标检测算法研究. 广州: 广东工业大学: 1-2
Xia G S, Bai X, Ding J, Zhu Z, Belongie S, Luo J B, Datcu M, Pelillo M and Zhang L P. 2018. DOTA: a large-scale dataset for object detection in aerial images//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE: 3974-3983 [DOI: 10.1109/CVPR.2018.00418http://dx.doi.org/10.1109/CVPR.2018.00418]
Xiao Z F, Qian L J, Shao W P, Tan X W and Wang K. 2020. Axis learning for orientated objects detection in aerial images. Remote Sensing, 12(6): 908 [DOI: 10.3390/rs12060908http://dx.doi.org/10.3390/rs12060908]
Xu Y C, Fu M T, Wang Q M, Wang Y K, Chen K, Xia G S and Bai X. 2021. Gliding vertex on the horizontal bounding box for multi-oriented object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(4): 1452-1459. [DOI: 10.1109/TPAMI.2020.2974745http://dx.doi.org/10.1109/TPAMI.2020.2974745]
Xu Y, Wang Y, Zhou W, Wang Y, Yang Z, Bai X. 2019. Textfield: Learning a deep direction field for irregular scene text detection. IEEE Transactions on Image Processing, 28(11): 5566-5579 [DOI: 10.1109/tip.2019.2900589http://dx.doi.org/10.1109/tip.2019.2900589]
Yao Y Q, Cheng G, Xie X X and Han J W. 2021. Optical remote sensing image object detection based on multi-resolution feature fusion. National Remote Sensing Bulletin, 25(5): 1124-1137
姚艳清, 程塨, 谢星星 韩军伟. 2021. 多分辨率特征融合的光学遥感图像目标检测. 遥感学报, 25(5): 1124-1137 [DOI: 10.11834/jrs.20210505http://dx.doi.org/10.11834/jrs.20210505]
Yang X, Fu K, Sun H, Yang J R, Guo Z, Yan M L, Zhang T F and Xian S. 2018. R2CNN++: multi-dimensional attention based rotation invariant detector with robust anchor strategy. arXiv Preprint arXiv: 1811.07126
Yang X, Yan J C, Feng Z M and He T. 2021. R3Det: refined single-stage detector with feature refinement for rotating object//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI: 3163-3171
Yang X, Yang J R, Yan J C, Zhang Y, Zhang T F, Guo Z, Sun X and Fu K. 2019. SCRDet: towards more robust detection for small, cluttered and rotated objects//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE: 8231-8240 [DOI: 10.1109/ICCV.2019.00832http://dx.doi.org/10.1109/ICCV.2019.00832]
Yu Y,Ai H, He X J, Yu S H, Zhong X, Zhu R F. 2020. Attention-based feature pyramid networks for ship detection of optical remote sensing image. National Remote Sensing Bulletin. 24(2): 107-115
于野, 艾华, 贺小军, 于树海, 钟兴, 朱瑞飞. 2020. A-FPN算法及其在遥感图像船舶检测中的应用. 遥感学报, 24(2): 107-115 [DOI: 10.11834/jrs.20208264http://dx.doi.org/10.11834/jrs.20208264]
Yi J R, Wu P X, Liu B, Huang Q Y, Qu H and Metaxas D. 2021. Oriented object detection in aerial images with box boundary-aware vectors//2021 IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa: IEEE: 2149-2158 [DOI: 10.1109/WACV48630.2021.00220http://dx.doi.org/10.1109/WACV48630.2021.00220]
Zhang F. 2019. Research and Application of FMCG Detection Based on Slant Object Detection Technology. Changsha: Hunan University: 1-2
张烽. 2019. 基于倾斜目标检测技术的快消品识别研究与应用. 长沙: 湖南大学: 1-2 [DOI: 10.27135/d.cnki.ghudu.2019.001517http://dx.doi.org/10.27135/d.cnki.ghudu.2019.001517]
Zhang G J, Lu S J and Zhang W. 2019. CAD-Net: a context-aware detection network for objects in remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 57(12): 10015-10024 [DOI: 10.1109/TGRS.2019.2930982http://dx.doi.org/10.1109/TGRS.2019.2930982]
Zhang L, Zhang Y S, Yu Y, Geng Y L and Wang H. 2019. Research on data augmentation for object detection of remote sensing image. Journal of Geomatics Science and Technology, 36(5): 505-510
张磊, 张永生, 于英, 耿彦龙, 王贺. 2019. 遥感图像目标检测的数据增广研究. 测绘科学技术学报, 36(5): 505-510 [DOI: 10.3969/j.issn.1673-6338.2019.05.012http://dx.doi.org/10.3969/j.issn.1673-6338.2019.05.012]
Zhang X H, Yao L B, Lv Y F, Han P and Li J W. 2020. Center based model for arbitrary-oriented ship detection in remote sensing images. Acta Photonica Sinica, 49(4): 210-218
张筱晗, 姚力波, 吕亚飞, 韩鹏, 李健伟. 2020. 基于中心点的遥感图像多方向舰船目标检测. 光子学报, 49(4): 210-218 [DOI: 10.3788/gzxb20204904.0410005http://dx.doi.org/10.3788/gzxb20204904.0410005]
Zhang Z H, Guo W W, Zhu S N and Yu W X. 2018. Toward arbitrary-oriented ship detection with rotated region proposal and discrimination networks. IEEE Geoscience and Remote Sensing Letters, 15(11): 1745-1749 [DOI: 10.1109/LGRS.2018.2856921http://dx.doi.org/10.1109/LGRS.2018.2856921]
Zhao Y Q, Rao Y, Dong S P and Zhang J Y. 2020. Survey on deep learning object detection. Journal of Image and Graphics, 25(4): 629-654
赵永强, 饶元, 董世鹏, 张君毅. 2020. 深度学习目标检测方法综述. 中国图象图形学报, 25(4): 629-654 [DOI: 10.11834/jig.190307http://dx.doi.org/10.11834/jig.190307]
Zhou B Y and Yang P. 2020. Natural text detector for natural scene based on neural network. Computer and Digital Engineering, 48(1): 163-166
周铂焱, 杨鹏. 2020. 基于神经网络的自然场景方向文本检测器. 计算机与数字工程, 48(1): 163-166 [DOI: 10.3969/j.issn.1672-9722.2020.01.030http://dx.doi.org/10.3969/j.issn.1672-9722.2020.01.030]
Zhou L, Wei H R, Li H, Zhang Y, Sun X and Zhao W Z. 2020. Objects detection for remote sensing images based on polar coordinates. arXiv Preprint arXiv: 2001.02988
Zhou X Y, Yao C, Wen H, Wang Y Z, Zhou S C, He W R and Liang J J. 2017. EAST: an efficient and accurate scene text detector//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. Honolulu: IEEE: 2642-2651 [DOI: 10.1109/CVPR.2017.283http://dx.doi.org/10.1109/CVPR.2017.283]
Zhou X Y, Zhuo J C and Krähenbühl P. 2019. Bottom-up object detection by grouping extreme and center points//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE: 850-859 [DOI: 10.1109/CVPR.2019.00094http://dx.doi.org/10.1109/CVPR.2019.00094]
Zhu Y and Du J. 2021. Textmountain: Accurate scene text detection via instance segmentation. Pattern Recognition, 110: 107336 [DOI:10.1016/j.patcog.2020.107336http://dx.doi.org/10.1016/j.patcog.2020.107336]
Zhu Y, Fang G S, Zheng B B and Han F. 2020. Research on detection method of refined rotated boxes in remote sensing. Acta Automatica Sinica, 1-11[2020-10-10]. https://doi.org/10.16383/j.aas.c200261https://doi.org/10.16383/j.aas.c200261
朱煜, 方观寿, 郑兵兵, 韩飞. 2020. 基于旋转框精细定位的遥感目标检测方法研究. 自动化学报: 1-11[2020-10-10]. https://doi.org/10.16383/j.aas.c200261https://doi.org/10.16383/j.aas.c200261
Zhu Y X, Du J and Wu X Q. 2020. Adaptive period embedding for representing oriented objects in aerial images. IEEE Transactions on Geoscience and Remote Sensing, 58(10): 7247-7257 [DOI: 10.1109/TGRS.2020.2981203http://dx.doi.org/10.1109/TGRS.2020.2981203].
Zitnick C L and Dollár P. 2014. Edge boxes: locating object proposals from edges//13th European Conference on Computer Vision. Zurich: Springer: 391-405 [DOI: 10.1007/978-3-319-10602-1_26http://dx.doi.org/10.1007/978-3-319-10602-1_26]
相关作者
相关机构