FY-2G卫星红外遥感图像中的震前异常统计分析
Statistical analysis of pre-seismic anomalies from FY-2G satellite infrared remote sensing images
- 2022年26卷第12期 页码:2655-2664
纸质出版日期: 2022-12-07
DOI: 10.11834/jrs.20210251
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2022-12-07 ,
扫 描 看 全 文
乐应波,陈福春,陈桂林.2022.FY-2G卫星红外遥感图像中的震前异常统计分析.遥感学报,26(12): 2655-2664
Yue Y B,Chen F C and Chen G L. 2022. Statistical analysis of pre-seismic anomalies from FY-2G satellite infrared remote sensing images. National Remote Sensing Bulletin, 26(12):2655-2664
红外遥感图像异常是一种重要的地震前兆,需要稳定且有效的提取算法才能发现地震前兆。然而,许多算法只是在少数地震中有验证,数据样本少,不能进行异常信号的统计分析。本文提出了一种方法,对中国及周边地区的红外遥感图像的功率谱异常信号进行统计,以评估算法的准确性和普适性。该方法还分析异常信号的幅度、空间范围和相关的地震信息,将时间和空间上连续的异常点视为一个样本,以计算不同参数条件下异常信号的阳性预测值和地震的真阳性率。本文提取了FY-2G卫星的红外遥感图像中的地震异常信号,并进行统计,得到20.37%的阳性预测值和65.96%的真阳性率。高幅度大范围的异常信号可以达到80%的阳性预测值。对于大于5.4级的地震,真阳性率可以达到81.82%。本文验证了功率谱相对变化法能在大部分地震前提取到红外遥感图像异常,该方法可以分析异常信号的特征和评估异常信号与地震的相关性,有利于算法的对比和改进。
The anomaly from infrared remote sensing images
as an important precursor of earthquakes
is influenced by season changes
weather conditions
and geological and human activities all at the same time
so it needs the stable and effective extraction algorithm to discover an earthquake precursor. The relative change of the power spectrum is a common algorithm used in earthquake case studies to extract information about earthquakes from infrared remote sensing data. However
this algorithm has only been verified in a few earthquakes
and the sample size is considerably small to statistically analyze abnormal signals. In addition
the previous research in statistical analysis involves a small space range
making it impossible to observe the abnormal phenomenon with a large area intuitively and completely.
This work proposes a statistical method of pre-seismic infrared anomalies based on connected domain identification to solve the above-mentioned problems. First
abnormal points with the time-space continuity are regarded as an abnormal signal sample. The positive predicted value of the abnormal signals and the true positive rate of earthquakes are calculated with different parameters. The significance test is then carried out in different conditions by using the Molchan diagram method to select the optimal parameters with the largest probability gain. Finally
the accuracy and universality of the algorithm are evaluated by analyzing the peak value and the length of the abnormal signal and relevant seismic information
including the time
magnitude
and location of the epicenter.
In this work
this method is applied to the relative power spectrum data of the FY-2G satellite infrared remote sensing images. The data in the long-wave infrared band are used to statistically analyze the pre-seismic infrared anomalies in China and the surrounding areas in 2018. Results show that the positive predictive value of 20.37% and the true positive rate of 65.96% could be achieved
and the probability gain is 1.76. The positive predictive value of the abnormal signals with the high value and the wide area is 80%
and the true positive rate of the earthquakes with a magnitude greater than 5.4 is 81.82%. Meanwhile
the true positive rate has an obvious regional difference
which shows that the true positive rate of earthquakes in the Circum-Pacific seismic zone is higher than that in the Mediterranean-Himalayan zone.
The statistical method used in this work has verified that the power spectrum relative change method could extract the infrared abnormal signal before most earthquakes and is more sensitive to earthquakes of magnitude 5.4 and above. The positive predictive value is low
and its application potential is limited. The positive predictive value could be improved to a certain extent by raising the threshold value. This method can be used to analyze the characteristics of abnormal signals and evaluate the correlation between abnormal signals and earthquakes and is beneficial to the comparison and improvement of the algorithm.
遥感FY-2G卫星红外遥感图像相对功率谱震前异常统计连通域识别
remote sensingFY-2G satelliteinfrared remote sensing imagerelative power spectrumpre-earthquake anomaly statisticsconnected domain identification
Akhoondzadeh M. 2013. A comparison of classical and intelligent methods to detect potential thermal anomalies before the 11 August 2012 Varzeghan, Iran, earthquake (Mw=6.4). Natural Hazards and Earth System Sciences, 13(4): 1077-1083 [DOI: 10.5194/nhess-13-1077-2013http://dx.doi.org/10.5194/nhess-13-1077-2013]
Akhoondzadeh M. 2014. Thermal and TEC anomalies detection using an intelligent hybrid system around the time of the Saravan, Iran, (Mw=7.7) earthquake of 16 April 2013. Advances in Space Research, 53(4): 647-655 [DOI: 10.1016/j.asr.2013.12.017http://dx.doi.org/10.1016/j.asr.2013.12.017]
Bellaoui M, Hassini A and Bouchouicha K. 2017. Pre-seismic anomalies in remotely sensed land surface temperature measurements: the case study of 2003 Boumerdes earthquake. Advances in Space Research, 59(10): 2645-2657 [DOI: 10.1016/j.asr.2017.03.004http://dx.doi.org/10.1016/j.asr.2017.03.004]
Bormann N, Saarinen S, Kelly G and Thépaut J. 2003. The spatial structure of observation errors in atmospheric motion vectors from geostationary satellite data. Monthly Weather Review, 131(4):706-718[DOI: 10.1175/1520-0493(2003)131<0706:TSSOOE>2.0.CO;2http://dx.doi.org/10.1175/1520-0493(2003)131<0706:TSSOOE>2.0.CO;2]
Choudhury S, Dasgupta S, Saraf A K and Panda S. 2006. Remote sensing observations of pre-earthquake thermal anomalies in Iran. International Journal of Remote Sensing, 27(20): 4381-4396 [DOI: 10.1080/01431160600851827http://dx.doi.org/10.1080/01431160600851827]
Dobrovolsky I P, Zubkov S I and Miachkin V I. 1979. Estimation of the size of earthquake preparation zones. Pure and Applied Geophysics, 117(5): 1025-1044[DOI: 10.1007/BF00876083http://dx.doi.org/10.1007/BF00876083]
Filizzola C, Corrado A, Genzano N, Lisi M, Pergola N, Colonna R and Tramutoli V. 2022. RST Analysis of anomalous TIR sequences in relation with earthquakes occurred in Turkey in the period 2004—2015. Remote Sensing, 14: 381[DOI: 10.3390/rs14020381http://dx.doi.org/10.3390/rs14020381]
Fu C C, Lee L C, Ouzounov D and Jan J C. 2020. Earth’s outgoing longwave radiation variability prior to M≥6.0 earthquakes in the Taiwan area during 2009—2019. Frontiers in Earth Science, 8: 364 [DOI:10.3389/feart.2020.00364http://dx.doi.org/10.3389/feart.2020.00364]
Gornyi V I, Sal’Man A G, Tronin A A and Shilin B V. 1988. Terrestrial outgoing infrared radiation as an indicator of seismic activity. Proceedings of the Academy of Sciences of the USSR, 301(1): 67-69
Guo X, Zhang Y S, Zhong M J, Shen W R and Wei C X. 2010. Variation characteristics of OLR for the Wenchuan earthquake. Chinese Journal of Geophysics, 53(11): 2688-2695
郭晓, 张元生, 钟美娇, 沈文荣, 魏从信. 2010. 提取地震热异常信息的功率谱相对变化法及震例分析. 地球物理学报, 53(11): 2688-2695 [DOI: 10.3969/j.issn.0001-5733.2010.11.01http://dx.doi.org/10.3969/j.issn.0001-5733.2010.11.01]
Jiang C S, Zhang L P, Han L B and Lai G J. 2011. Probabilistic forecasting method of long-term and intermediate-term seismic hazard I: molchan error diagram. Earthquake, 31(2): 106-113
蒋长胜, 张浪平, 韩立波, 来贵娟. 2011. 中长期地震危险性概率预测中的统计检验方法Ⅰ: molchan图表法. 地震, 31(2): 106-113 [DOI: 000-3274(2011)02-0106-08http://dx.doi.org/000-3274(2011)02-0106-08]
Jiao Z H, Zhao J and Shan X J. 2018. Pre-seismic anomalies from optical satellite observations: a review. Natural Hazards and Earth System Sciences, 18(4): 1013-1036 [DOI: 10.5194/nhess-18-1013-2018http://dx.doi.org/10.5194/nhess-18-1013-2018]
Jiao Z H and Shan X J. 2021. Statistical framework for the evaluation of earthquake forecasting: a case study based on satellite surface temperature anomalies. Journal of Asian Earth Sciences, 211: 104710 [DOI: 10.1016/j.jseaes.2021.104710http://dx.doi.org/10.1016/j.jseaes.2021.104710]
Jiao Z H and Shan X J. 2022. Pre-seismic temporal integrated anomalies from multiparametric remote sensing data. Remote Sensing, 14: 2343 [DOI: 10.3390/rs14102343http://dx.doi.org/10.3390/rs14102343]
Jing F, Cui Y J, Sun K and Xiong P. 2018. Temporal and spatial characteristics of the 2008 Wuqia, Xinjiang M6.7 earthquake multiple parameters. Journal of Remote Sensing, 22(S1): 181-191
荆凤, 崔月菊, 孙珂, 熊攀. 2018. 2008年新疆乌恰M6.7地震多参量时空变化特征研究. 遥感学报, 22(S1): 181-191 [DOI: 10.11834/jrs.20187213http://dx.doi.org/10.11834/jrs.20187213]
Kato S, Wielicki B A, Rose F G, Liu X, Taylor P C, Kratz D P, Mlynczak M G, Young D F, Phojanamongkolkij N, Sun-Mack S, Miller W F and Chen Y. 2011. Detection of atmospheric changes in spatially and temporally averaged infrared spectra observed from space. Journal of Climate, 24(24): 6392-6407 [DOI: 10.1175/JCLI-D-10-05005.1http://dx.doi.org/10.1175/JCLI-D-10-05005.1]
Lu X, Meng Q Y, Gu X F, Zhang X D, Xie T and Geng F. 2016. Thermal infrared anomalies associated with multi-year earthquakes in the Tibet region based on China’s FY-2E satellite data. Advances in Space Research, 58(6): 989-1001 [DOI: 10.1016/j.asr.2016.05.038http://dx.doi.org/10.1016/j.asr.2016.05.038]
Ma J, Chen S, Hu X, Liu P and Liu L. 2010. Spatial-temporal variation of the land surface temperature field and present-day tectonic activity. Geoscience Frontiers, 1(1): 57-67[DOI: 10.1016/j.gsf.2010.09.002http://dx.doi.org/10.1016/j.gsf.2010.09.002]
Ma W Y, Kang C L, Liu J, Yue C and Lu X. 2018. Evolution characteristics of multiple stratification air temperature in vertical of Kunlun Mountains Ms8.1 earthquake. Journal of Remote sensing, 2018, 22(s1): 174-180.
马未宇, 康春丽, 刘军, 岳冲, 卢显 . 2018. 昆仑山Ms8.1地震前后大气温度垂直分层变化特征研究. 遥感学报, 22(s1): 174-180 [DOI: 10.11834/jrs.20187237http://dx.doi.org/10.11834/jrs.20187237]
Meng Q Y, Kang C L, Shen X H, Jing F and Qu C Y. 2017. Seismic infrared remote sensing (2nd edition). Beijing: Seismology press:125-128
孟庆岩, 康春丽, 申旭辉, 荆凤, 屈春燕. 2017. 地震红外遥感.2版. 北京: 地震出版社: 125-128) [ISBN: 978-7-5028-4832-3/P(5531]
Ouzounov D, Bryant N, Logan T, Pulinets S and Taylor P. 2006. Satellite thermal IR phenomena associated with some of the major earthquakes in 1999—2003. Physics and Chemistry of the Earth, Parts A/B/C, 31(4/9): 154-163 [DOI: 10.1016/j.pce.2006.02.036http://dx.doi.org/10.1016/j.pce.2006.02.036]
Ouzounov D, Liu D F, Kang C L, Cervone G, Kafatos M and Taylor P. 2007. Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophysics, 431(1/4): 211-220 [DOI: 10.1016/j.tecto.2006.05.042http://dx.doi.org/10.1016/j.tecto.2006.05.042]
Qiang Z J, Kong L C, Zhen, L Z, Guo M H, Wang G P and Zhao Y. 1997. An experimental study on temperature increasing mechanism of satellitic thermo-infrared. Acta Seimological Sinica. 10(2), 247-252
强祖基, 孔令昌, 郭满红, 王戈平, 郑兰哲, 赁常恭, 赵勇. 1997. 卫星热红外增温机制的实验研究. 地震学报, 19(2): 197-201 [DOI: 10.1007/s11589-997-0093-0http://dx.doi.org/10.1007/s11589-997-0093-0]
Qiang Z J, Li L Z, Dian C G, Xu M and Ge F S. 1998. Use of remote sensing technique to predict earthquakes//Proceedings of the SPIE 3504, Optical Remote Sensing for Industry and Environmental Monitoring. Beijing: SPIE: 342-345 [DOI: 10.1117/12.319529http://dx.doi.org/10.1117/12.319529]
Qu C Y, Shan X J and Ma J. 2006. Study on the methods for extracting earthquake thermal infrared anomaly. Advances in Earth Science, 21(7): 699-705
屈春燕, 单新建, 马瑾. 2006. 地震活动性热红外异常提取方法研究. 地球科学进展, 21(7): 699-705 [DOI: 10.11867/j.issn.1001-8166.2006.07.0699http://dx.doi.org/10.11867/j.issn.1001-8166.2006.07.0699]
Rivera P C and Khan T M A. 2012. Discovery of the Major Mechanism of Global Warming and Climate Change. Journal of Basic & Applied Sciences, 8(1): 59-73[DOI: 10.6000/1927‐5129.2012.08.01.29http://dx.doi.org/10.6000/1927‐5129.2012.08.01.29]
Saradjian M R and Akhoondzadeh M. 2011. Thermal anomalies detection before strong earthquakes (M>6.0) using interquartile, wavelet and Kalman filter methods. Natural Hazards and Earth System Sciences, 11(4): 1099-1108 [DOI: 10.5194/nhess-11-1099-2011http://dx.doi.org/10.5194/nhess-11-1099-2011]
Shen X H, Zhang X M, Hong S Y, Jing F and Zhao S F. 2013. Progress and development on multi-parameters remote sensing application in earthquake monitoring in China. Earthquake Science, 26: 427-437 [DOI: 10.1007/s11589-013-0053-9http://dx.doi.org/10.1007/s11589-013-0053-9]
Shen X H, Zhang X M, Cui J, Zhou X, Jiang W L, Gong L X, Li Y S and Liu Q Q. 2018. Remote sensing application in earthquake science research and geophysical fields exploration satellite mission in China. Journal of Remote Sensing, 22(S1): 1-16
申旭辉, 张学民, 崔静, 周新, 姜文亮, 龚丽霞, 李永生, 刘芹芹. 2018. 中国地震遥感应用研究与地球物理场探测卫星计划. 遥感学报, 22(S1): 1-16 [DOI: 10.11834/jrs.20188337http://dx.doi.org/10.11834/jrs.20188337]
Song D M, Xie R H, Zang L, Yin J Y, Qin K, Shan X J, Cui J Y and Wang B. 2018. A new algorithm for the characterization of thermal infrared anomalies in tectonic activities. Remote Sensing, 10(12): 1941 [DOI: 10.3390/rs10121941http://dx.doi.org/10.3390/rs10121941]
Sundararajan D. 2017. Morphological Image Processing. Digital Image Processing. Singapore: Springer: 217-256 [DOI: /10.1007/978-981-10-6113-4_8http://dx.doi.org//10.1007/978-981-10-6113-4_8]
Tramutoli V, Aliano C, Corrado R, Filizzola C, Genzano N, Lisi M, Martinelli G and Pergola N. 2013. On the possible origin of thermal infrared radiation (TIR) anomalies in earthquake-prone areas observed using robust satellite techniques (RST). Chemical Geology, 339: 157-168 [DOI: 10.1016/j.chemgeo.2012.10.042http://dx.doi.org/10.1016/j.chemgeo.2012.10.042]
Tronin A A. 2006. Remote sensing and earthquakes: a review. Physics and Chemistry of the Earth, 31(4-9): 138-142 [DOI: 10.1016/j.pce.2006.02.024http://dx.doi.org/10.1016/j.pce.2006.02.024]
Turk F, Hawkins J D, Smith E, Marzano F, Mugnai A and Levizzani V. 2000. Combining SSM/I, TRMM and Infrared Geostationary Satellite Data in a Near-Realtime Fashion for Rapid Precipitation Updates: Advantages and Limitations. Proceedings of the 2000 EUMETSAT Meteorological Satellite Data Users. Bologna, Italy, 29 May-2 June 2000, 2: 705-707
Wang Y, Zhang Y S and Wei C X. 2018. Analysis of thermal infrared anomalies for the April 16, 2013 MW7.8 of Khash, Iran earthquake. Earthquake Research in China, 32(3): 435-441 [DOI: CNKI:SUN:ZDZW.0.2018-03-013http://dx.doi.org/CNKI:SUN:ZDZW.0.2018-03-013]
Wei C X, Zhang Y S, Guo X, Hui S X, Qin M Z and Zhang Y. 2013. Thermal infrared anomalies of several strong earthquakes. The Scientific World Journal, 2013: 208407 [DOI: 10.1155/2013/208407http://dx.doi.org/10.1155/2013/208407]
Yao Q L and Qiang Z J. 2012. Thermal infrared anomalies as a precursor of strong earthquakes in the distant future. Natural Hazards, 62(3): 991-1003 [DOI: 10.1007/s11069-012-0130-8http://dx.doi.org/10.1007/s11069-012-0130-8]
Zechar J D and Jordan T H. 2008. Testing alarm-based earthquake predictions. Geophysical Journal International, 172(2): 715-724 [DOI: 10.1111/j.1365-246X.2007.03676.xhttp://dx.doi.org/10.1111/j.1365-246X.2007.03676.x]
Zhang X, Zhang Y, Tian X, Zhang Q and Tian J. 2017. Tracking of thermal infrared anomaly before one strong earthquake-In the case of Ms6.2 earthquake in Zadoi, Qinghai on October 17th, 2016. Journal of Physics: Conference Series, 910(1): 012048
Zhang Y and Meng Q Y. 2019. A statistical analysis of TIR anomalies extracted by RSTs in relation to an earthquake in the Sichuan area using MODIS LST data. Natural Hazards and Earth System Sciences, 19(3): 535-549 [DOI: 10.5194/nhess-19-535-2019http://dx.doi.org/10.5194/nhess-19-535-2019]
Zhang Y S, Guo X, Wei C X, Shen W R and Hui S X. 2011. The characteristics of seismic thermal radiation of Japan Ms9.0 and Myanmar Ms7.2 earthquake. Chinese Journal of Geophysics, 54(10): 2575-2580
张元生, 郭晓, 魏从信, 沈文荣, 惠少兴. 2011. 日本9级和缅甸7.2级地震热辐射表现特征. 地球物理学报, 54(10): 2575-2580 [DOI: 10.3969/j.issn.0001-5733.2011.10.014http://dx.doi.org/10.3969/j.issn.0001-5733.2011.10.014]
Zhang Y S, Guo X, Zhang X M and Li M Y. 2004. Study on the inversion method of land surface temperature by applying IR bright temperature data of still satellite. Northwestern Seismological Journal, 26(2): 113-117
张元生, 郭晓, 张小美, 李明永. 2004. 应用静止卫星热红外遥感亮温资料反演地表温度的方法研究. 西北地震学报, 26(2): 113-117 [DOI: 10.3969/j.issn.1000-0844.2004.02.003http://dx.doi.org/10.3969/j.issn.1000-0844.2004.02.003]
Zhang Y S, Guo X, Zhong M J, Shen W R, Li W and He B. 2010. Wenchuan earthquake: brightness temperature changes from satellite infrared information. Chinese Science Bulletin, 55(18): 1917-1924
张元生, 郭晓, 钟美娇, 沈文荣, 李稳, 何斌. 2010. 汶川地震卫星热红外亮温变化. 科学通报, 55(10): 904-910 [DOI: 10.1007/s11434-010-0016-7http://dx.doi.org/10.1007/s11434-010-0016-7]
Zhang Y, Meng Q Y, Ouillon, G, Sornette,D. Ma W Y, Zhang L L, Zhao J, Qi Y and Geng F. 2021. Spatially variable model for extracting TIR anomalies before earthquakes: application to Chinese Mainland. Remote Sensing of Environment, 267:112720 [DOI: 10.1016/j.rse.2021.112720http://dx.doi.org/10.1016/j.rse.2021.112720]
Zoran M A, Savastru R S and Savastru D M. 2014. Surveillance of Vrancea active seismic region in Romania through time series satellite data. Central European Journal of Geosciences, 6(2): 195-206 [DOI: 10.2478/s13533-012-0158-zhttp://dx.doi.org/10.2478/s13533-012-0158-z]
相关作者
相关机构